Hypothesis Testing

- Example: Average intake in children for dietary fat is 70 g of fat per day. Suppose we want to study children who eat a vegetarian diet. Possible hypotheses are
 - 1. Average fat intake is 70 g per day
 - 2. Average fat intake is less than 70 g per day
- Def: <u>One-sample problem</u>—a single distribution.
- Def: <u>Hypothesis</u>—statement about parameters in a population or populations. We want to know how likely this is to be true, given the evidence (data).

- Def: Null hypothesis—H₀—the hypothesis to be tested. This is usually a statement of no difference. The population value of the parameter is not different from some specified value.
- Def: <u>Alternative hypothesis</u>—H₁ or H_A—This is the statement we will accept if we reject the null hypothesis.
- H_o: Mean fat intake in vegetarian children is 70 g per day. H_o: $\mu = \mu_0$ or $\mu \ge \mu_0$
- H₁: Mean fat intake in vegetarian children is < 70 g per day. H₁: $\mu < \mu_0$

Possible decisions:

- 1. Accept H_o (really, fail to reject H_o)
- 2. Reject Ho

Possible Scenarios:

Jury Trial			
	Truth		
Verdict	Innocent	Guilty	
Innocent	Correct	Error	
	decision		
Guilty	Error	Correct	
		decision	

Test of hypothesis		
	Truth	
Results of	$\mathbf{H}_{\mathbf{o}}$	\mathbf{H}_1
Test		
Accept Ho	Correct	Type II
	decision	error
Reject Ho	Type 1 error	Correct
		decision

Def: Type I error is the probability of rejecting H_o when H_o is true.

Def: Type II error is the probability of accepting H_0 when H_1 is true.

Def: Level of significance: α = Probability of a Type I error. This is the area under the curve below (or above) the critical value. This is the probability of rejecting H_0 when H_0 is true.

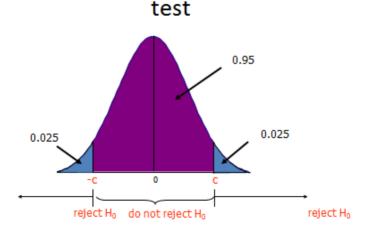
Def:β: Probability of a Type II error.

Def: $1-\beta$ —Power of a test. This is the Pr (rejecting $H_0|H_1$ is true).

Goal: Make α , β as small as possible. Usually, as $\alpha \uparrow$, $\beta \downarrow$ and as $\alpha \downarrow$, $\beta \uparrow$.

Fix α (0.05 or 0.01). Find a test to minimize β .

Best test for the fat experiment is one based on \overline{X} .


Def: Acceptance Region—These are the values of \overline{X} for which H_0 is accepted.

Def: Rejection Region—These are the values of \overline{X} for which H_0 is rejected.

Note: For this example, we are conducting a one-sided or one-tailed test. We will only reject H_0 for values of \overline{X} that are low.

Def: One-tailed—this is a test in which values of parameter under H_1 either > or < values under H_0 but not both.

The picture behind the two sided

