

(Second part L1)

Note :the single of data= datum

simple frequency distribution table

- Qualitative Variable
- The left column is the variable, the right one is the frequency(number of observation for each category)
- Have a total at the bottom
- Every table should have a title which answers three questions
(what, who and when).
- Source should be written below the table
- Ligand (key) : includes a legend key for referencing the data. each legend key is a name identifying the data represented by the specific key
- Example

Distribution of the third year medical students according to their degree of success in may 2007 in Mutah university faculty of medicine
Degree of success No of students
Excellent
Very good
Good
fair

Source: records of the faculty of medicine 2007

Quantitative variable (continuous or discrete)

1. The smallest observation is chosen as the lower limits of the intervals.
2. The width or the size of the interval is $\mathbf{5 , 1 0}$ or $\mathbf{1 5}$
3. The number of interval counted to be in the permissible range of 4-12. to achieve the main advantage of tabular presentation namely summarization of a large mass of data.
4. The main disadvantage of tabular presentation is loss of precision in the presentation.
5. If less than 4 (loss of precision)we can reconstruct the table using a width less than 5
6. If $\mathbf{> 1 2}$ (result in missing the summarization value of the table) we can reconstruct the table using a width > than 5

Duplication of the limits of intervals should be avoided by one of the 4 methods

A (cont. \& discrete)	B (discrete)	C (cont. \&discrete)	D (cont.)
10 to less than 15	$10-14$	$10-$	$10-14.9$
15 to less than 20	$15-19$	$15-$	$15-19.9$
20 to less than 25	$20-24$	20	$20-24.9$
25 to less than 30	$25-29$	$25-30$	$25-29.9$

1. Forms A, and C can be used in both continuous and discrete quantitative variables.
2. Form B can be used in discrete quantitative variables
3. While form D is only used in continuous quantitative variables.

Example for continuous variable:

Distribution of 100 medical student (1985) according to their $\mathbf{H b}$ \%

$\mathrm{Hb} \%$	No of patients
$65-$	22
$70-$	15
$75-$	19
$80-$	11
$85-$	12
$90-$	4
$95<100$	100
total	

First Interval:

Each Interval In Table Has The Following.

1. Lower limit
2. Upper limit
3. Width
4. Midpoint
5. Number of observation

Lower limit (L.L)= 65
Upper limit (U.L)= 69.999, practically= 70
Width(continuous quantitative variables)=
U.L-L.L= 70-65=5

Mid point $=$ L.L + U.L $=65+70=67.5$

22

Number of observations $=22$

*Example for discrete quantitative variable:

Distribution of patients in hospital
(X) according to their family size in 1984.

Family size \quad No. of patients

3-4
$5-6$
7.8

9-10
$11 \cdot 12$

Total

145

Last interval:
L.L =11
U.L $=12$

Width (discrete quantitative variables) $=(\mathrm{U} . \mathrm{L}-\mathrm{L} . \mathrm{L}+\underline{1})=$ $(12-11+1)=2$ (No. of counts within the interval e.g.
($11 \& 12=2$)
Midpoint $=11+12=11.5$
2
Number of observation $=12$
N.B: in construction of the table, we should avoid open ended table l.e. lower limit of first interval and/or upper limit of last interval are missed or unknown

Table Of An Association Or Contingency Table.

A) Two by two table:
i.e Two columns by two rows, it is used to show relation between a condition and characteristic e.g relation between smoking and lung cancer
Example: relation between smoking and lung cancer

Smoking	Lung cancer		Total
Status	Yes	No	
Smoker	35	15	50
None smoker	65	85	150
Total		100	100

B) cxr table: i.e. more than two columns by two or more than two rows
Example: Different types of treatment of disease (X) and outcome.

Treatment Outcome \quad Total

Comparing Frequency Distribution Table
i.e distribution of two different groups according to one variable.
N.B : For comparison, the total groups should have the same total frequencies otherwise calculate the percent of total for each frequency. Examples: distribution of low birth weight (L.B.Wt) babies and normal babies according to their mother's age.

Age of mother (years)	L.B.Wt	Normal
$20-$	22	30
$25-$	13	39
$30-$	15	18
$35-$	20	8
$40<45$	30	5
Total	100	100

Two Way Table Or Two Way Classification

i.e One group is classified according to two variables e.g weight and height or age and blood pressure to find correlation between these two variables.

Example: Distribution study by weight and height

Weight (KG)	Height (cm)					
	$150-$	$155-$	$160-$	$165-$	$170<175$	
	18	5	2	-	-	25
$60-$	18	5				
$65-$	15	8	7	2	-	32
$70-$	11	15	8	2	2	38
$75-$	7	15	10	1	3	40
8085	-	2	5	2	7	15
Total	51	45	32	10	12	150

