BODY FLUID AND OSMOLARITY AND OVERVIEW OF RESPIRATORY SYSTEM

Body fluid volume :

Dilution method:

1) A known amount of substance is given whose volume of distribution is the body fluid compartment of interest
The substance that is given according to the fluid compartment :

- TBE : isotopic water :means contain other type of H isotopes
- plasma :Evans blue
- ECF : mannitol

Dilution method:
2) Substance is allowed to equilibrate
3) The concentration of substance is measured in the plasma and the volume of distribution is calculated

Volume $=\underline{\text { amount }}$
concentration
Volume : volume of distribution
Amount : amount of the substance Concentration : concentration of the substance in plasma

Determines volumes of specific body fluid compartments

TBW : through dilution method usually isotopic water

- ECF : through dilution method : usually mannitol
Interstitial fluid = ECF - PLASMA

$$
\text { ICF = TBW }- \text { ECF }
$$

Measurements

* Measuring blood volume
- Total blood volume $=\frac{\text { plasma volume }}{1 \text {-hematocrit }}$
, Example:

Plasma volume $=3$ liters, hematocrit $=0.40$

$$
\frac{3}{(1-0.4)}=5 \text { liters }
$$

Total blood volume Hematocrit (Hct) or Packed cell volume (PCV)

- Blood volume $=$ The blood cells 3% of body weight + blood plasma 5% of body weight $=8 \%$ of our body weight expressed in kg
- $8 \% \times 70 \mathrm{~kg}=$ to $5.6 \mathrm{~L}=5.6 \mathrm{~kg}$
- Total Blood Volume (TBV) = Plasma Volume / 1Hematocrit (PCV)
- Total Blood Volume (TBV)=2.8 / 1-45\%=5.6L
- Blood Plasma $=55 \% \times 5.6 \mathrm{~L}$
- Blood cell $=45 \% \times 5.6 \mathrm{~L}$

1) Move an amount of blood in a test tube
contains
anticoagulant often heparin
2) Take a sample of the test tube in small capillary

Whole Blood Sample
3) But the sample in
the centrifugation (which runs around it self $1000 / \mathrm{min}$)
4) The blood is separated into 2 parts Pass the hematocrit paper to measure the percentage

Blood Transfusion

Whole Blood transfusion increases a patient's hemoglobin and iron levels
A patient suffering from an iron deficiency or anemia. Iron deficiency cause lack of hemoglobin transport which carries the oxygen
Plasma is the liquid part of the body's blood. Plasma transfusions are used for patients with liver failure, severe infections, and serious burns.

Platelets are a component of blood that stops the body from bleeding.
Patients who have illnesses like leukemia and chemotherapy treatment must get regular platelet transfusions to stay healthy.

Anemia : reduce the number account of whole RBCs in whole blood volume

Transfusion : transfer of blood from a person to another through IV drip to increase patient hemoglobin and then increase iron level

The normal RBCs
percentage according of your blood is 45\% more or less of this value refers to problems
.suppose that the PCV =15\% that refers to reduction of the amount of RBCs in whole blood volume and often called anemia

Sometimes no need for whole blood transfusion (not all blood components are needed) that's depends on pathological cases

Some cases require only plasma transfusion :

1. Liver defects The liver function to produce many types of plasma proteins (albumin and globin)
2. sever infections due to deficiency of important proteins

Some cases require only platelets transfusion : Platelets : has a very important function in positive feedback (coagulating)

1) Leukemia : cancer of bone marrow or lymphocyte

Blood Donation

One pint (blood unit) $=500 \mathrm{ml}$ or half a court (one quart = 2 pints)
UK AND US = PINTS

In this example you got 10pints in your blood.

So, when you donate 1 pint you giving less than 1/10 of your blood body.

So, the person who less than 100 pounds doesn't give blood. In other word when you donate blood you given 10% or less

If you gave twice that you will lose a liter of blood, half a court of blood then you need a medical attention.

Note : a person with 100 pound which almost 50 kg can't give !!
Because : 50 * 8\% = 4 L
And $500 \mathrm{ml} / 4000 \mathrm{ml}=12 \%$ And that means he donates more than 10% of his blood body

shutterstock.com • 1390054736

Polycythemia

Primary polycythemia very rare: slow growing blood cancer such as polycythemia vera

Secondary polycythemia
Exposure to low oxygen

1. living in high attitudes
2. Pulmonary disease

Tonicity

- The Mole (Avogadro's Number) $=6.022 \times 1023$
- 1 dozen cookies $=12$ cookies
- 1 mole of cookies $=6.02 \times 1023$ cookies

First, you need to find the molar mass of NaCl . To do that, just add up the masses of Na and Cl :
$22.989 \mathrm{~g} / \mathrm{mol}+35.453 \mathrm{~g} / \mathrm{mol}=58.442 \mathrm{~g} / \mathrm{mol}$.
So 1 mole of table salt weights 58.442 grams

The total solutes in the fluid is called tonicity

The unit we used to quantify the tonicity is osmoles. osmole is a combination of two words osmosis and moles

For each milli osmo of solute particle difference between inside and outside will create an osmotic pressure of 19.3 millimeters of mercury.

282-300mosmol/L times $19.3 / \mathrm{mosmol} / \mathrm{L}$
it will create 5443 mmHg osmotic pressure which is very high

Plasma (mOsm/ $\mathrm{H}_{2} \mathrm{O}$)
Intracellular ($\mathrm{mOsm} / \mathrm{L}_{2} \mathrm{O}$)

Na^{+}	142		139	14	
K^{+}	4.2		4.0	140	
Ca^{++}	1.3		1.2	O	
Mg^{+}	0.8		0.7	20	Osmatic pressure :
Cl^{-}	108		108	4	the affect of each
$\mathrm{HCO}_{3}{ }^{-}$	24		28.3	10	the affect of each
$\mathrm{HPO}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	2		2	11	solute particle
$\mathrm{SO}_{4}^{-}{ }^{-}$	0.5		0.5	1	which create the
Phosphocreatine				45	movement from
Carnosine				14	one compartment
Amino acids	2		2	8	one compartment
Creatine	0.2		0.2	9	to another (
Lactate	1.2		1.2	1.5	pressure
Adenosine triphosphate				5	difference)
Hexose monophosphate				3.7	difference)
Glucose	5.6		5.6		
Protein	1.2		0.2	4	
Urea	4		4	4	
Others	4.8		3.9	10	The values of
Total mOsm/L	301.8		300.8	301.2	solutes on each
Corrected osmolar activity ($\mathrm{mOsm} / \mathrm{L}$)	282.0	300	281.0	281.0	tonicity are
Total osmotic pressure at $37^{\circ} \mathrm{C}(\mathrm{mm} \mathrm{Hg})$	5443		5423	5423	almost the same

The affects of these solute concentration results in osmotic pressure (different from one fluid to another)

Total osmatic pressure = tonicity volume x concentration difference(19.3)
TOP for plasma $=282 \times 19.3=5443$
TOP for Interstitial fluid $=281 \times 19.3=5423$
TOP for ICF $=281 \times 19.3=5423$

Oncotic or colloid osmotic pressure

- blood plasma likes to any other extracellular fluid except protein. The total amount of solute particles is small higher than intra and extra which make it hypertonic.(high solute concentration)
- The difference will be around 20 millimeter of mercury (albumin)
$5443-5423=20 \mathrm{mmHg}$
- Which means that the blood plasma is about 20 mmHg higher than anywhere else and this is called osmotic pressure or colloid pressure

Hydrostatic pressure :

1) More water molecules inside and less solutes
2) Causing movement of water to out side

Oncotic pressure :

1) More solute inside the capillary than out side
2) Causing movement of water t the inside

Classified
 according the normal Mosm/L values
 Osmolarity of the solutions

If the extracellular fluid becomes hypertonic the water will be drawn out and it will cause crenation (burst) (unhappy cell)
if the extracellular fluid is hypotonic the water will be drawn in and it will causelysis (unhappy cell)

Here in the picture as shown a red blood cell surrounded by isotonic solution which means the same proportion of water inside and outside cells; (this is called a happy cell)

The question now. Is how to express quantitatively how hypo or hyper?

If it is hyper ; it will be adjusted by hypo solutions and if it is hypo it will be adjusted by salt.

Hypotonic : solution has high water concentration according to the solutes
Hypertonic : solution has high solutes concentration according to th water according to th water

Transfuse a solution into the body its tonicity < 300
Osmosis of water from out to red blood cells \qquad This solution is (hypotonic)

ISOTONIC VS HYPOTONIC VS HYPERTONIC

Isotonic solutions are
solutions having equal osmotic pressures

Have equal solute concentrations

Isotonic environments
show no effect on
cells

Isotonic solutions are
not helpful in food preservation

Hypotonic solutions
are solutions having lower osmotic pressures

Have a low
concentration

Hypotonic environments cause cells to swell

Hypotonic solutions are not helpful in food preservation

Hypertonic solutions are solutions having comparatively higher osmotic pressures

Have a high
concentration

Hypertonic
environments cause cells to shrink

Hypertonic solutions are helpful in food preservation

Electrophoresis

Composition of blood plasma

Figure 1: Normal electrophoretic graph and Blood Proteins

- The tonicity of the isotonic solution

282-300

- Our bodies are isotonic
plasma has more proteins than other fluids in the body which create a slightly difference in osmatic pressure

Each difference in mmole of solutes from out side to the inside create an osmatic pressure $=19.3 \mathrm{mmHg}$

Total osmatic pressure in plasma $=19.3 \times 282$ = 5443
Which differs from other fluids about 20 and this difference because of plasma proteins

The difference between 2 osmatic pressure such as plasma and other fluids $=20$ which equal to oncotic pressure

- The ECF is a little hypertonic more than ICF because of plasma proteins so always there is a tendency to move from inside ICF to outside
- The total osmatic pressure of plasma is higher than other fluids because the amount of proteins

Plasma proteins

Alpha
1,2

peta

gam
 ma

The albumin protein is the mainly cause of oncotic pressure 70\%-90\% because of its law weight Also, globulins but not as albumin

Electrophoresis : is device has a gel layer which attached to 2 poles (+,-)

- When running this device, the components of plasma with + charge will move toward the poles and the one with charges like plasma proteins will move toward the + poles
- This device also separates articles according to their weight the one with the least weight will be separated first and in plasma proteins albumin is the smallest weight of them

This diagram showing the speed of protein separation from plasma through electrophoresis

electrophoresis

According to the charge and weight

B

If you add 4 millimole of KCL to 1 L of water you will end up with 8 mosm/L

If we add 2 millimole cacl2 into 1 L of water, you will end up with $6 \mathrm{mosm} / \mathrm{L}$

If you add 5 millimole of glucose into water, it will stay as one particle soit will end up with 5 mosm/L

KCl is an ionic compound lonic compound dissociate in water so
Tonicity :

1) Calculate the moles of each ion :

- Moles of the compound x atoms number
- $\mathrm{K}+=1$ atom $\times 4$ mmole $=4$
- $\mathrm{Cl}-=1$ atom $\times 4 \mathrm{mmole}=4$

2) Gather the number of mole for each ions:

- $4+4=8 \mathrm{mosm} / \mathrm{L}=$ tonicity

CaCl 2 is an ionic compound lonic compound dissociate in water so
Tonicity :

1) Calculate the moles of each ion :

- Moles of the compound x atoms number
- Ca2+ = 1 atom $\times 2$ mmole=2
- $\mathrm{Cl}-=2$ atom $\times 2 \mathrm{mmole}=4$

2) Gather the number of mole for each ions:

- $2+4=6 \mathrm{mosm} / \mathrm{L}=$ tonicity

The covalent compound wont dissociated in water so the tonicity $=5 \mathrm{mosm} / \mathrm{L}$ in glucose

How to quantify numerically the tonicity of solution?

How to compute the total osmolarity of 150 mM Nacl solution?

150 mM solution is equal to 0.15 M solution.

First of all, what we mean by this question is the total of solute particle in a Liter of solution.

If you take 150 mmole of Nacl molecule in each salt particle you will multiply times two since it will break up into $150 \mathrm{mom} /$ Na and 150 mmol d for the total of 300 mosmol/L
mole/L Losolution or M: Moarity- itis the \# molecules ofeaCH solute found ina solution per unitof volume of solution. Itis expressed in mole/literof solution
mole/kg of solventor m: Moality- itis the \# molecules of EACH solute found ina solution per unitof weighto fosovent.It tis expresesed in mole/ 100Og of sovent

Physiological saline is $0.9 \% \mathrm{NaCl}$. This means that 100 ml 's of physiological saline contains 0.9 g of NaCl . One liter of physiological saline must contain 9 g of NaCl . We can determine the molarity of a physiological saline solution by dividing 9 g by $58 \mathrm{~g} . .$. since we have 9 g of NaCl in a liter of physiological saline, but we have 58 grams of NaCl in a mole of NaCl . When we divide 9 g by 58 g , we find that physiological saline contains 0.154 moles of NaCl per liter. That means that physiological saline (0.9% NaCl) has a molarity of 0.154 molar. We might express this as 0.154 M ... or 154 millimolar (154 mM).

A $0.9 \% \mathrm{NaCl}$ and a 0.154 M NaCl solution are the same thing. They are physiologic isotonic solution

How to quantify numerically the tonicity of solution?

- A 3% sodium chloride (NaCl) solution is hypertonic and when infused intravenously would increase extracellular fluid volume and osmolarity, thereby causing water to flow out of the cell. This would decrease intracellular fluid volume and further increase extracellular fluid volume.
- The $0.9 \% \mathrm{NaCl}$ solution and 5% dextrose solution are isotonic, and therefore would not reduce intracellular fluid volume.
- Pure water and the $0.45 \% \mathrm{NaCl}$ solution are hypotonic, and when infused would increase both intracellular and extracellular fluid volumes

Questions:

1. What would happen to a cell placed in a hypertonic solution
A) The cell would shrink
B) The cell would expand and possibly burst
C) The cell would remain the same
D) The cell would dance and do the HEY HEY!
(A)
2. What is an isotonic solution?
A) When solutions are in equilibrium
B) When the solution has more solute
C) When the solution has less solute
D) Has a greater pressure
(A)
3. Which plasma protein is responsible for oncotic pressure?
A)alpha globulins
B) collagen
C) fibrinogen
D) albumin
(D)
4. A person should never drink salty water because their cells would
A) shrink
B) expand
C) DYE
B) EQUILIBRIUM
(B)
5. Calculate the osmolarity (i.e. numerical value) of the following Molar solutions :
1) 0.30 M NaCl solution = \qquad Osm/L ANW $=0.60$ osm/L (hypertonic) (hyposmatic)
```
2) 0.15 M glucose solution =
``` \(\qquad\)
``` Osm/L ANW \(=0.15\) osm/L (hypotonic ) ( hyperosmotic )
```

3) 0.20 M urea solution = \qquad Osm/L ANW = 20 osm /L (hypotonic) (hyperosmotic)
4) A 0.30 M penetrating propanol solution which does not dissociates is?
ANW : iso-osmotic and hypo-tonic
5) .What is the Movement of WATER IN and OUT of the cell membrane?

6) Why do your fingers Prune when in the water for a long time?
A) Carbon goes out
B) Diffusion
C) Osmosis

D)Magic
(C)

