Histology Licture (8) Blood: Slide (1):

© 2006 Encyclopædia Britannica, Inc.

*Is special type of the connective tissue.

*The ground substance is fluid in consistency instead of the jelly like ground substance.

Histology Licture (8) Blood: Slide (2): **Connective Tissue:** -C.T. proper: -C.T. constituents: ->Cells: few, widely separated. ->fibers are present in the ground substance. Fibers: A-Collagen Fibers (Most Common). B-Elastic Fibers. C-Reticular Fibers. ->Intercellular substance: abundant Jelly like ground substance : Because of: -Glucose Amino Glycans. -Proteglycans. -Adhesive Glycoproteins. -Tissue Fluid. ->Blood vessels: rich ->Origin: mesodermal ->Function: support, defence and nutrition 1- Loose C.T. -Adipose C.T. -Reticular C.T. - Mucoid C.T. 2-Dense C.T. (Regular (Dense C.T and white fibrous connective tilsue) / Irregular)

-Modified C.T.:

- ->Hard = bone
- ->Firm= Cartilage
- ->Fluid nature= Blood
- ->Modified type of CTMesodermal in origin
- ->Considered modified connective tissue because it contains:
- -cells
- -a liquid ground substance (called plasma)
- -dissolved protein fibers. ---> (Normal Condition)

In the normal condition the fiber is dissolved (Fibringen), if an injury happen the fibringen turns into "FIBRIN THREAD".

-In the normal condition the fibers are not aberrant.

Histology Licture (8) Blood: Slide (3):

-Blood makes up 6-8% of our total body weight.

-Normal adult blood volume is 5-6 L.
-In closed circulation = CVS
-Blood is made up of cellular material in a fluid called plasma.

->Blood is responsible for.....
1-Transporting gases (02 & C02).
-Transports the 02 from the lung to the tissues. Then, returns the C02 to the lung

to get rid of it.

2-Transporting waste products .

3-Transporting nutrients.

4-Helping remove toxins from the body.

Histology Licture (8) Blood:

Slide (4):

-Blood:

-Consists of liquid and cellular components by a machine called a centrifuge. -Formed Blood elements

-Cells : 45%

I- 99% RBC. II-Buffy Coat--> 1-WBC (leukocytes). 2-Platelets.

Originate in the red bone marrow -Plasma: 55%

-No aberrant fibers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Centrifuge

(1) Withdraw blood into a syringe and place in a glass tube.

Place the tube into a centrifuge and spin for about 10 minutes.

Histology Licture (8) Blood: Slide (5):

Histology Licture (8) Blood: Slide (6):

-The blood is made up of cells that are suspended in liquid called plasma.

-Plasma makes up 55% of the blood.

- -Plasma is made of 90% water and 10% proteins, lipids, carbohydrates, amino acids, antibodies, hormones, electrolytes, waste, salts, and ions
- -Blood cells make up the remaining 45% of the blood.
- -Red blood cells make up 99% of the blood cells.

-White blood cells and platelets make up the other 1%.

Histology Licture (8) Blood: Slide (7): 55% of blood volume: -Water 92%. -organic substances:7 % ->plasma proteins (albumin, globulin, prothrombin and fibrinogen) ->Hormones & enzymes. -inorganic salts 1% Plasma (55%) (NaCl, Bicarbonates, phosphates & calcium) White blood cells Buffy coat and platelets (<1%) Red blood cells (45%) hematocrite 44%

Histology Licture (8) Blood: Slide (8):

The Blood Film= Smear Preparation of blood for laboratory study

- -Why do we do a blood film ?
- 1.To study blood elements.
- 2.To make differential leucocytic count.

Steps :

- -Put a small drop of blood
- -Spread into a thin film
- -Stain with Leishman or Giemsa stain
- (methylene blue +eosin)

ADVANCEMENT Fig. 7 - How to prepare a blood smear Histology Licture (8) Blood:

Slide (9):

The Blood Film Stains of blood film Giemsa's / Leishman's = methylene blue + eosin ->basophilic (violet) ->eosinophilic (pink) ->azurophilic (red purple) -Platelets-> Biconvex + No nucleus.

-Erythrocytes-> Biconcave + No nucleus.

-WBC-> Rounded + have nuclei (all types)

Histology Licture (8) Blood: Slide (10):

Blood Cell Count = CBC ->Manual method= Conventional =hemocytometer= counting chamber.

->Electronic method= automated hematology analyzer.

->RBC count 4.5-5 million/mm3 in female

->Total leukocytic count 4,000-11,000/mm3

->Platelet count 250,000- 350,000/ mm3

->Differential leukocytic count =Examination of blood film -Each subtype has its percentage compared to the total number of WBC

Histology Licture (8) Blood: Slide (11):

Red Blood corpuscles =Erythro/cytes Blood cell: 1-Total or Differential count 2-Shape & size 3-Structure (nucleus + granules) 4-Function 5-Life span

6-Abnormalities

Histology Licture (8) Blood: Slide (12): Red Blood corpuscles Erythrocytes

Normal RBCs total count:

-In males -> 5- 5.5 millions / mm3 blood -in females -> 4.5-5 millions / mm3 blood

LM of RBCs: ->Shape: - Biconcave discs. Mature RBCs are membrane- bound corpuscle. (Bag filled with hemoglobin) ->Size: -Diameter 7.5 µm -Thickness 1 µm ->Nucleus:Anucleate. No nucleus. ->Cytoplasm 33% of the corpuscular volume is Hemoglobin = heme "Fe"+ Globin 'protein'

Histology Licture (8) Blood: Slide (13):

-RBC has organelles when it was immature. While maturation the cell extrude the organelles outside the cell to fill the cyto-

plasm with hemoglobin and keeps a few mitochondria -> energy.

EM picture of RBCs:

-No nucleus, No typical organelles.

-Only few mitochondria

-subplasmalemmal cytoskeleton (actin, spectrin & ankyrin) responsible for the flexibility of RBCs. (To change it's shape when it

passes through. Capillary that is smaller than the cell size. -Glycocalyx (Well developed cell coat) responsible for the ABO/ Rh blood group. -Function of RBCs Carry 02& C02

Histology Licture (8) Blood: Slide (14):

2- life span: -100-120 days -Then removed by Macrophages of spleen and liver sinusoids. -Through phagocytosis then the (iron) is used by the bone marrow to produce new RBC.

Adaptation to function

- 1- surface area.
- 2- amount of HB

(no nucleus/ organelles)

- 3- HB at the periphery
- 4- selective permeability (Take 02 and Reduce CO2)
- 5- carbonic anhydrase
- 6- flexibility to squeeze without damage
- 7- Glycocalyx (Well developed cell coat)

Histology Licture (8) Blood: Slide (15):

Abnormalities of RBCs Abnormalities of RBCs in number -Anaemia: decrease in the total number of RBCs. -Polycythaemia: increase in the total number of RBCs. Causes: (decreased oxygen tension) Physiological: newborns ,high altitude (Few 02 which leads to an increase in the number of RBC.) Pathological: chronic lung and heart diseases.

Abnormalities of RBCs in size

-Microcytosis:

diameter of RBCs is less than 6 $\mu m.$ (Microcytic anaemia)

-Macrocytosis:

diameter of RBCs is more than $9\mu m.$ (Macrocytic anaemia)

-Anisocytosis?? Variable size

Histology Licture (8) Blood: Slide (16):

Abnormalities of RBCs in shape 1- Rouleaux formation In slow circulation (Stagnation)

2- Poikilocytosis Variable in shape

3- In hypertonic solution echinocytes(crenation) (Shrinkage).

4- In hypotonic solution Ghosts (Rupture).

Histology Licture (8) Blood: Slide (17):

• Sickle Cell Anemia (abnormal Hemoglobin)

Reticulocytes

- ->immature RBCs
- ->Reticulocytes represent 1% of all RBCs in normal blood film.
- ->Nucleated

->differ than mature RBCs

-slightly larger (8µm).

-Cytoplasm contains remnants of ribosomes.

-On staining with cresyl blue form a reticulate pattern.

->Clinical significance:

An increase in this percentage (reticulocytosis) indicates an

-accelerated rate of erythropoiesis (Formation of the RBC). and produce immature RBC.

-compensate for anemia or hemorrhage.

Histology Licture (8) Blood: Slide (18):

BLOOD PLATELETS

->Cell fragments of megakaryocyte.

-Note: The fragmenation happens to the process of megakaryocyte (not the cell itself) produce the platelets.

->Thrombocytes.

->Thromboplastids

->Origin: from megakaryocyte in the bone marrow.

-Normal Platelet Count

250,000-350,000/mm3

200-400,000

->Structure (L. M) :

-Non-nucleated bodies,

-2-4microns,central granular portion (granulomere) &peripheral clear zone (hyalomere)

-->LM picture

->Shape: Anucleate, biconvex discs.

->Diameter :2-3 μm.

Histology Licture (8) Blood:

Slide (19):

BLOOD PLATELETS

->LM picture

-Granulomere,granular central region

(Dark)

-Hyalomere at the periphery, there is a pale basophilic zone

(Light)

© Elsevier. Young et al. Wheater's Functional Histology 5e - www.studentconsult.com

Histology Licture (8) Blood: Slide (20):

∻<u>EM:</u>

≻<u>Shape:</u>

- Irregular.
- Pseudopodia.
- > <u>Platelet membrane:</u>
- ▲ glycoprotein coat for: Adhesion
- Aggregation
- Hyalomere & granulome

-Well developed cell coat.

Histology Licture (8) Blood: Slide (21):

PLATELET FUNCTION

At sites of injury of BVs:

- Platelet adhesion
- Platelet aggregation
- Thrombus formation
- Clot retraction
- Clot removal
- **Functions of platelets**
- Platelet aggregation-→white thrombus
- Local blood coagulation-→ red thrombus
- Serotonin \rightarrow Vaso-constriction
- Clot retraction \rightarrow by microfilaments

Clot removal→ by hydrolytic enzymes.

> Platelet with *α*-granules

Vascular Injury

Platelet

Histology Licture (8) Blood: Slide (22):

PLATELET ABNORMALITY

• Thrombocytopenia 🔻 🔻

-The number decrease.

Thrombocytopenia (purpura) (Bleeding) or Ecchymosis

-The number in-

Thrombasthenia

crease.

(Thrombosis) / Clot Formation

Leads to: Stroke/ Vein Thrombosis

Histology Licture (8) Blood: Slide (23):

Histology Licture (8) Blood: Slide (24):

Abnormality	Function	Life span	Structure	Shape	Size	Number	
Polycythaemia: i.e. increase in the total number of R.B.Cs. Anaemia: i.e. decrease in the total number of R.B.Cs. Sickle Cell Anemia	Carry O2 & Co2	100-120 days	no nuclei& other organelles Bag of Haemoglobin	biconcave disc	7.5-8.5 um Macrocytes > 9 μm, Microcytes < 6 μm Anisocytosis = variation in size	<i>males</i> is 5 - 5.5 millions / mm ³ <i>females</i> it is 4.5-5 millions / mm ³ blood.	RBCs Red blood corpuscle Erythrocytes – Greek: "Red
INCREASE Thrombosis Decrease Bleeding	 the process of thrombus formation (blood clotting) in response to any vascular endothelial injury to prevent excessive blood loss. clot retraction and removal of the blood clot after healing of the vessel wall to restablish the flow of the blood. 	Life span around 8-12 days	Fragments of megakaryocyte Non-nucleated	Biconvex	3µm 2-5 µm diameter	250,000-350,000/mm ³	Platelets Thrombocytes Thromboplastides