
Solutions

A solution is a homogeneous mixture of more than two substances (solute(s) and solvent(s))

Molarity = number of moles / Volume in Liter

Number of moles = mass (gm)/ molar mass

Normality = Molarity * n n is number of H+ or OH-

eg: for 1M HCl solution the normality of this solution is equal to 1 For 1M solution of H2SO4 the normality of this solution is equal to 2

Dilution Formula

C1 is the initial concentration V1 is the initial volume

C1 V1 = C2 V2

C2 is the final concentration V2 is the final volume

For 3N solution of H2SO4, the Molarity of this solution is equal to?

$$3 = M * 2$$
 $M = 3/2 = 1.5$

For 6M solution of AI(OH)3, the Normality of this solution is equal to?

Normality = Molarity * n in this case n is equal to 3

$$N = 6 * 3 = 18$$

Example: Prepare 1 liter of 1.00 M NaCl solution.

First calculate the molar mass of NaCl which is the mass of a mole of Na plus the mass of a mole of Cl or 22.99 + 35.45 = 58.44 g/mol

Molarity = number of moles/ volume (L)
Number of moles = molarity X Volume = 1X1 = 1
Number of moles = mass/ molar mass

Mass = molar mass X number of moles Mass = 58.44 X 1 = 58.44 gm

Weigh out 58.44 g NaCl.

Place the NaCl in a 1 liter volumetric flask

Add a small volume of distilled, deionized water to dissolve the salt. Fill the flask upto the 1 L line.

Example:

A laboratory procedure calls for 250 mL of an approximately 0.10 M solution of NH_3 . Describe how you would prepare this solution using a stock solution of concentrated NH_3 (14.8 M).

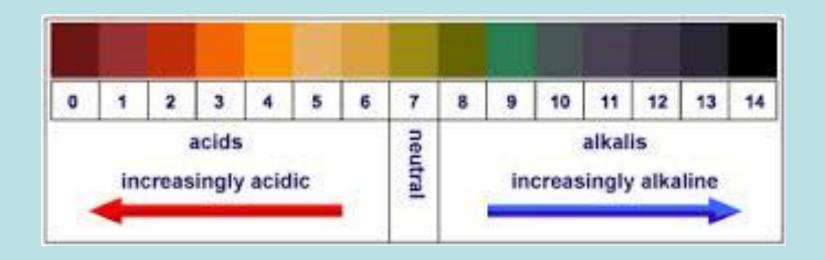
Substituting known volumes in equation C1 V1 = C2 V2

$$14.8 \text{ M} \times V_1 = 0.10 \text{ M} \times 0.25 \text{ L}$$

and solving for V_1 gives 1.69 × 10⁻³ liters, or 1.7 mL.

Since we are making a solution that is approximately $0.10 \,\mathrm{M}\,\mathrm{NH_3}$ we can use a micropippette to measure the $1.7 \,\mathrm{mL}$ of concentrated $\mathrm{NH_3}$, transfer the $\mathrm{NH_3}$ to a volumetric flask (250 ml), and add sufficient water to give a total volume of approximately 250 mL.

BUFFERS


A buffer is a solution that resist the change in pH, a buffer can be a weak acid and its conjugate base (or a weak base with its conjugate acid). The weak acid is able to donate H⁺ ions to neutralize incoming basic ions while the conjugate base is able to accept H⁺.

Practically a buffer is prepared from mixing weak acid and its strong salt, example:

The pH scale is a logarithmic scale representing the concentration of H⁺ ions in a solution which equal the negative log of the H⁺ ions concentration.

$$pH = -log [H^+]$$

$$[H^+] = 10^-7$$
 mol/L neutral solution pH = 7
 $[H^+] > 10^-7$ mol/L acidic solution pH < 7
 $[H^+] < 10^-7$ mol/L basic solution pH > 7

The pH of buffer solution can be determined using the Henderson-Hasselbalch equation.

pH = pKa + log [A-]/[HA]

Ka: dissociation constant for the weak acid

pKa (- log Ka) for weak acid.

[HA] = concentration of the buffer weak acid

[A-] = concentration of conjugate base for the buffer weak

acid.

pH test strips

pH meter

Type of buffers

1-Synthetic: Can be prepared in the lab.

2.Physiological buffers (natural):

The main physiological buffers are the bicarbonate, proteins (example haemoglobin), and the phosphate buffers.

Bicarbonate buffer

This is the most important buffer in blood. It is made from equilibrium between carbonic acid and its conjugate base bicarbonate.

 $H_2CO_3 \leftrightarrow HCO_3^- + H+$ Carbonic acid bicarbonate ion

Phosphate buffer

equilibrium

The phosphate buffer consists of dihydrogen phosphate ion $(H2PO_4^-)$ in equilibrium with monohydrogen phosphate ion (HPO_4^{2-}) and H_+ $H_2PO_4^- \longleftrightarrow H_+ + HPO_4^{2-}$ (weak acid) (conjugate base) The weak acid, $H2PO_4^-$, and its conjugate base, HPO_4^{2-} , are in