

Qualitative Tests for Carbohydrates

Dr. Nesrin Mwafi
Biochemistry & Molecular Biology Department
Faculty of Medicine, Mutah University

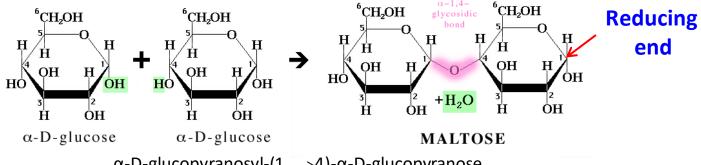
Carbohydrates

- Our Aim in this Lab:
- 1. to characterize carbohydrates present in an unknown solution
- 2. To distinguish between different carbohydrates based on various chemical assays (aldose/ketose, reducing/non-reducing sugar, polysaccharides/simple sugars....etc.)

Classification of Carbohydrates

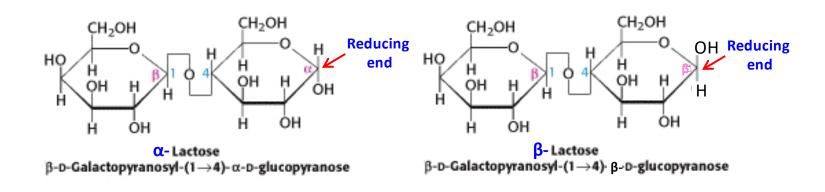
- المن المناس
- □ Carbohydrates are "Sugars" or "Saccharides" consist of the empirical formula (CH₂O)n where n ≥ 3.
 - Monosaccharides: The building blocks of CHO which cannot be hydrolyzed into smaller units like glucose, galactose and fructose
 - Disaccharides: contain two monosaccharides covalently linked by glycosidic bond like sucrose which consists of glucose and fructose
 - 3. Oligosaccharides: contain 3-10 units of monosaccharides covalently linked by glycosidic bond like Raffinose (a trisaccharide composed of galactose, glucose and fructose found in cabbage and broccoli
 - 4. Polysaccharides: are polymeric molecules composed of long chains of monosaccharides linked together via glycosidic bonds like starch, cellulose and glycogen

Monosaccharides


- ☐ They are classified according to the number of carbon atoms: trioses, tetroses, pentoses, hexosesetc.
- □ Also classified according to the chemical nature of the carbonyl group C=O either to Aldoses (the carbonyl group is an aldehyde) or Ketoses (the carbonyl group is a ketone)
- ☐ Sugar derivatives (modified monosaccharides): sugar acids, sugar alcohols, deoxy sugars and amino sugars

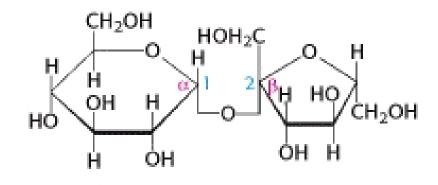
Monosaccharide	Sugar alcohol
Glyceraldehyde	Glycerol/glycerin
Ribose	Ribitol
Mannose	Mannitol
Glucose	Sorbitol

Disaccharides



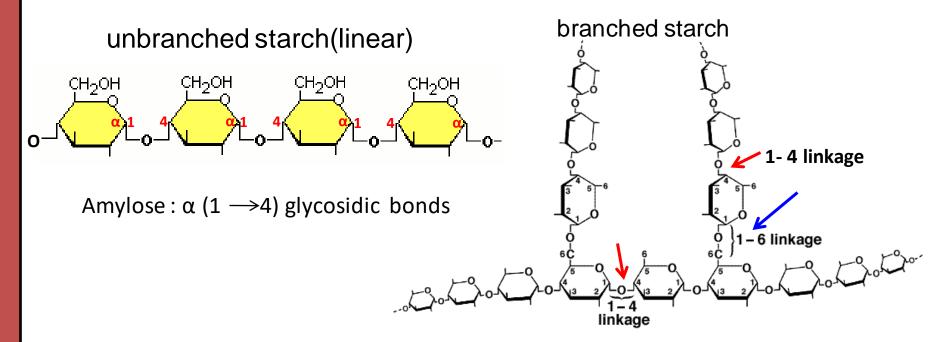
Maltose "malt sugar": consists of two α-glucose units

 α -D-glucopyranosyl- $(1 \longrightarrow 4)$ - α -D-glucopyranose


2. Lactose "milk sugar": consists of glucose & galactose

Disaccharides

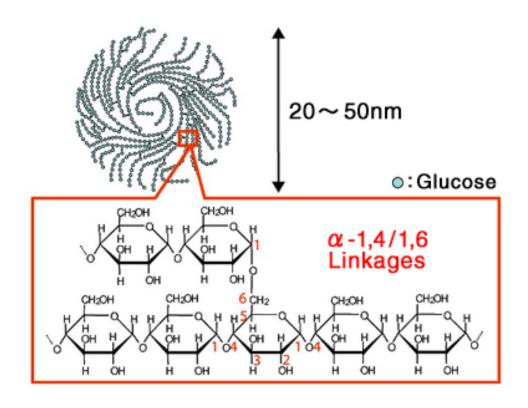
3. Sucrose "table sugar": consists of glucose & fructose


α-D-Glucopyranosyl-(1 → 2)-β-D-fructofuranose

 Sucrose is not a reducing sugar because the anomeric carbon of the second residue (the reducing end) is not free but involved in the glycosidic bond formation

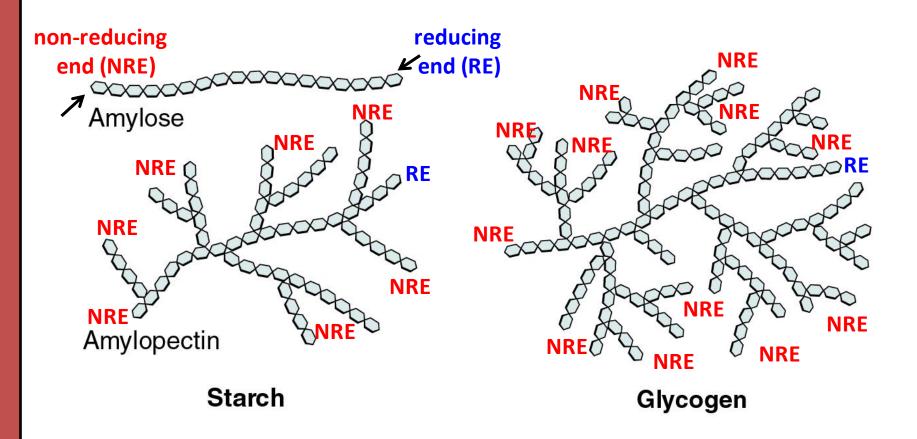
Polysaccharides

1. Starch: the storage polysaccharide in plants. It is a mixture of amylose (20%, unbranched) and amylopectin (80%, branched)



Amylopectin: α (1 \rightarrow 4) glycosidic bonds with α (1 \rightarrow 6) branch points

Polysaccharides


2. Glycogen: the storage polysaccharide in animals and human. It is highly branched polymer

Polysaccharides

• Starch and glycogen have one reducing end (the molecule end containing a free anomeric carbon C1). On the other hand, the branches ends are all called non-reducing ends

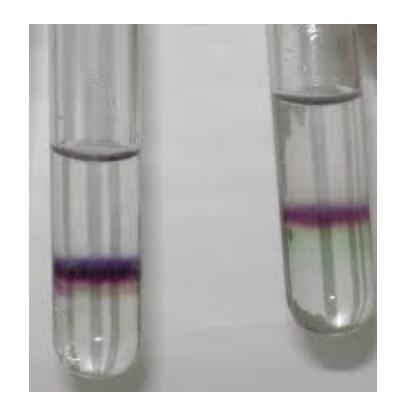
Reducing Sugar

- Sugars are classified as either reducing or non-reducing depending upon the presence of potentially free anomeric carbon or carbonyl group
- if the reducing groups are involved in the formation of glycosidic linkage, the sugar belongs to the non- reducing category like sucrose
- The reducing property is mainly due to the ability of these sugars to reduce metal ions such as copper to form insoluble cuprous oxide (cupric ion Cu⁺² —— cuprous ion Cu+1)

(Cupile for Cu —— Cupilous for Cu+1)

 All monosaccharides are reducing sugars, along with some disaccharides, oligosaccharides, and polysaccharides

Tests for Carbohydrates


- There are a number of chemical tests for detection of carbohydrates, determining their properties and, possibly, their identity:
- 1. Molisch Test: the general test for carbohydrates
- lodine Test: used to differentiate simple sugars (mono/disaccharides) and polysaccharides
- 3. Benedict's Test and Barfoed's Test: used to differentiate reducing from non-reducing sugars.
- 4. Seliwanoff Test: used to distinguish ketoses from aldoses

 Principle: when carbohydrates are treated with concentrated sulphuric acid (H₂SO₄), they undergo dehydration to give furfural derivatives. These compounds condense with α-naphthol (Molisch reagent) to form colored products, generally a purple/violet ring at the interface of the two layers. Pentoses yield furfural while Hexoses yield 5-Hydroxy methyl furfurals

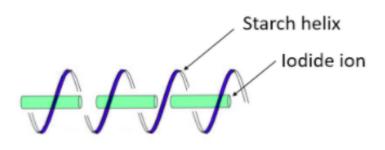
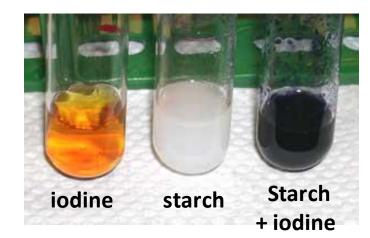
 An appearance of reddish violet or purple colored ring at the junction of two liquids is observed in a positive Molisch test

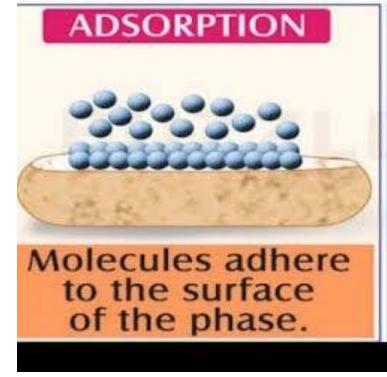
Procedure: Take 2 ml of carbohydrate solution in a clean and dry test tube. Add 2 drops of Molisch reagent (α -naphthol) and mix. Tilt the test tube at a 45 degree angle and add carefully 2ml of concentrated sulphuric acid along the side of the test tube so as to form 2 layers.

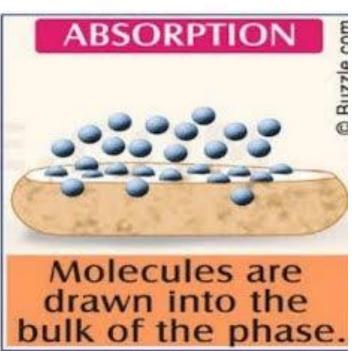
 Interpretation: This is a sensitive but a non-specific test and is given positive by all types of carbohydrates. If the oligosaccharides or polysaccharides are present they are first hydrolyzed to monosaccharides which are then dehydrated to give the test positive.

Iodine Test

- القالم المالية
- This is a test for polysaccharides such as starch
- Principle: lodine forms a coordinate complex between the helically coiled polysaccharide chain and iodine centrally located within the helix due to adsorption. The color of the complex obtained depends upon the length of the unbranched or linear chain available for complex formation
- Interpretation: Glycogen: gives reddish brown color whereas starch gives deep blue color

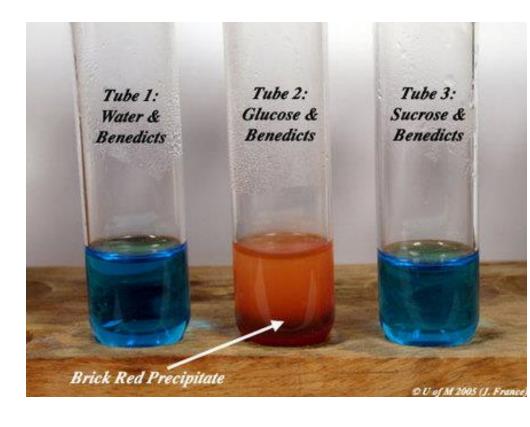

Fig.- Starch-iodine complex



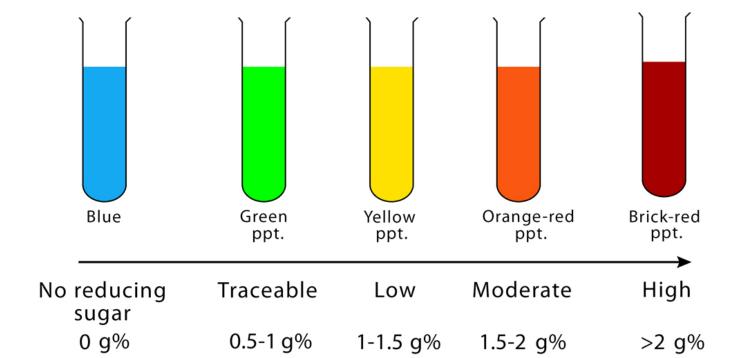
Absorption / Adsorption

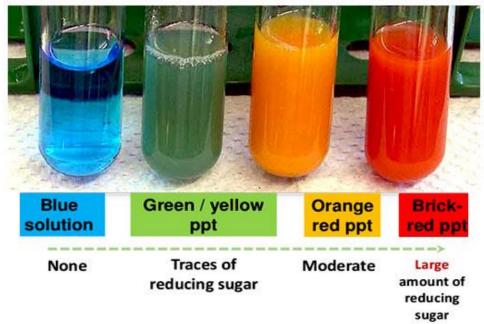
Difference between

Iodine Test


- Monosaccharides and Disaccharides are two small to trap the iodine molecules and do not form dark colored complexes. Therefore, the iodine test can be used to distinguish between mono/disaccharides and polysaccharides
- Procedure: place 2 mL of each solution to be tested in a test tube. Add 2-3 drops of the lodine reagent and mix. Record your results.

- This test is for reducing sugars which are capable of reducing metal ions in solution
- Principle: In this test, cupric ions (Cu⁺²)(aqua blue in solution) found as copper sulphate CuSo₄ are reduced to cuprous ions (Cu⁺¹) that form Cu₂O copper oxide under alkaline conditions which is a brick-red precipitate


Procedure: Add 8
 drops of carbohydrate
 solution to 5 ml of
 Benedict's reagent
 and boil over a flame
 or in a boiling water
 bath for 2 minute. Let
 the solution cool down

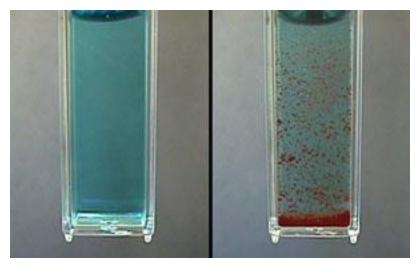


• Benedict's test is a semi quantitative test (Diabetes urine test). The color formed depends upon the amount of reducing sugar (glucose) present in the mixture

(For Levels of Reducing Sugar)

Urine strips for quick urine test for diabetes

Barfoed's Test


- The Barfoed's test is similar to the Benedict's test but differs in the specific reagent used (copper (II) acetate in 1% acetic acid solution) which is less reactive than the Benedict's reagent
- Principle: reducing sugars can reduce cupric ions even in acidic conditions. This test is used to distinguish reducing monosaccharides from disaccharides by controlling pH and time of heating. Mono saccharides react very fast whereas disaccharides react very slowly
- As in Benedict's test, the primary reaction is the reduction of Cu⁺² ions to Cu₂O which forms a brick red precipitate.

$$RCHO + 2Cu^{2+} + 2H_2O \rightarrow RCOOH + Cu_2O \downarrow + 4H^+$$

Barfoed's Test

 Procedure: add 2 ml of carbohydrate solution to 2 ml of Barfoed's reagent and keep the test tube in the boiling water bath for 2-3 minutes only. Cool under running water

negative

positive

A scanty brick red precipitate is observed in a positive reaction.

Barfoed's Test

Interpretation:

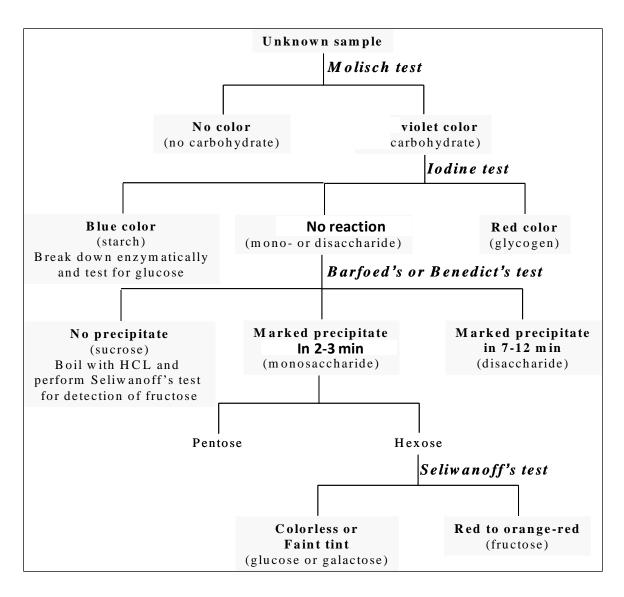
- 1. The positive reaction indicates the presence of a reducing monosaccharide
- On prolonged heating disaccharides can also give this test positive. Hence, the solution should be boiled for 3 minutes only.

Seliwanoff's Test

- **Principle:** Keto hexoses on treatment with hydrochloric acid form 5-hydroxymethyl furfural which on condensation with resorcinol (Seliwanoff reagent) gives a cherry red colored complex
- Procedure: to 3 ml of Seliwanoff reagent (resorcinol and HCL) add 1ml of sugar like fructose. Boil for 1- 2 min only then cool the solution

A cherry red color is observed in a positive reaction

Seliwanoff's Test



Interpretation:

- 1. This test gives positive result with ketohexoses like fructose and fructose containing sugars (e.g. sucrose)
- 2. This test distinguishes between glucose and fructose
- Overheating of the solution should be avoided as aldoses get converted to ketoses and give a false positive reaction with Seliwanoff reagent

Classification of Unknown Sample

Sugars Identification

Biochemical test	Glucose	Fructose	Maltose	Lactose	Sucrose
Molisch					
Benedict					
Barfoed					
Seliwanoff					

Sugars Identification

Biochemical test	Glucose	Fructose	Maltose	Lactose	Sucrose
Molisch	Positive	Positive	Positive	Positive	Positive
Benedict	Positive	Positive	Positive	Positive	Negative
Barfoed	Positive	Positive	Negative	Negative	Negative
Seliwanoff	Negative	Positive	Negative	Negative	Positive