

macroscopic anatomy

(Gross anatomy) – the study of large, easily observable structures (by naked eye)

Microscopic anatomy (cytology=histology) – the study of very small structures, where a magnifying lens or microscope is needed.

Histology: study of normal tissues

Pathology: study of diseased tissues

مع الاحراص

Introduction to Histology and Cell Structure

- All organisms are made of cells unit structure and function of the body
- The cell is the simplest collection of matter that can live

Two types of cells make up every organism

- Eukaryotic with true nucleus

Eukaryotic cells have internal membranes that compartmentalize their functions

Prokaryotic and Eukaryotic Cells

Characteristic	Prokaryote	Eukaryote
Typical organisms	bacteria, archaea	protists, fungi, plants, animals
Nucleus	Absent (called a nucleoid)	Present
Diameter of a typical cell	≈1µm	10–100 μm
بعضها الدين المن ثبت العم بالخلاف والاسك و الي بواريم ترقي العربي المن ثبت العم بالخلاف	Absent	Present
Cytoplasmic organelles	Small Mbosome Los	Present examples include lysosomes, Golgi complex, endoplasmic reticulum, mitochondria & chloroplasts
Chromosomes	Single circular DNA molecule membrane Haploid (1N)	Multible linear DNA molecules Haploid (1N) sex cells or Diploid (2N) weekent weamblane halls
Ribosomes	Smaller size 70S: 50S+30S	Larger size 80S: 60S+40S
Cell division	Binary fission or budding	Mitosis /Meiosis

Organ GC GCH reverse

Cell structure

- Human body has at least 200 different cell types

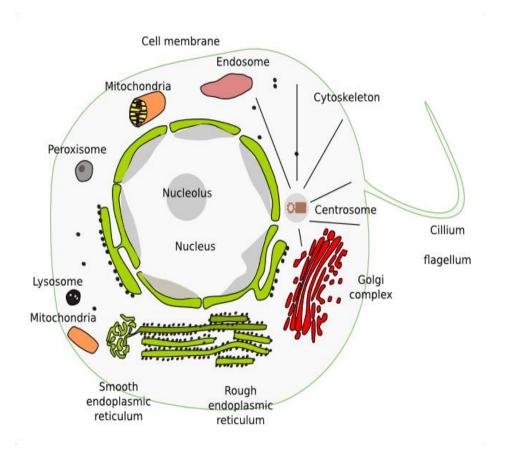
2 major components: المواني ناص عناء المحالي المحالية ال تاكدي وطبغها مابعرہ اذا علم بے صیت اکیکہ ہے musculecell 1, -: 12 **Cytoplasm** تبيمي طويلة بدلماتكوعمرور muscule fileer (pis of ses (x) os hereton g organel as Contraction der baids واعجله بالاكس راكميوسين صای المروق ہے تعمی ہے شاق **Nucleus** in iels comeders call small Wisi Clerk membrianches &

Each cell is bounded by a cell membrane

يعنى كل دورة خط الط خاص عيزها ول و توي رظينها

The cytoplasm

Composed of:

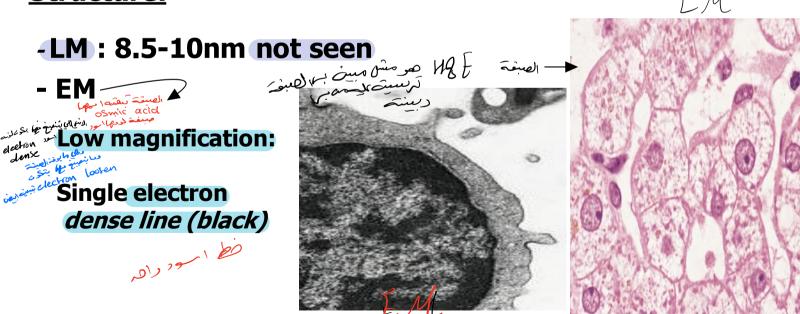

الرمنية تبعت الميتوبلزم 1- Cytosol:

jelly like fluid matrix, its primary component is water

2-Organelles

3- Inclusion

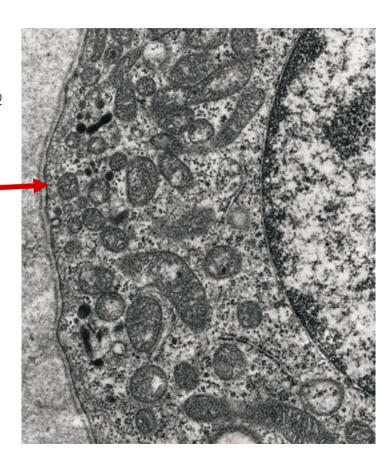
4- Cytoskeleton


The Cell Membrane

Plasma membrane = Plasmalemma

Definition

- It is a vital dynamic , stable , semipermeable structure
 - -Acting as a barrier that surrounds the boundary of the cell and separates its internal contents from the environment


Structure:

EM of the cell membrane

```
Higher magnification: 31 ayers
               Trilaminar =
Trilamellar =
3 layers:
  electron dence silo
```

- Outer dense (black)
 Middle lucent (white)
- Inner dense (black)

Molecular structure of the Cell membrane

- Membranes have been chemically analyzed
 - And found to be composed of

3 components:

1-Lipid molecules:

a-phospholipids

b- cholesterol

a-phospholipids

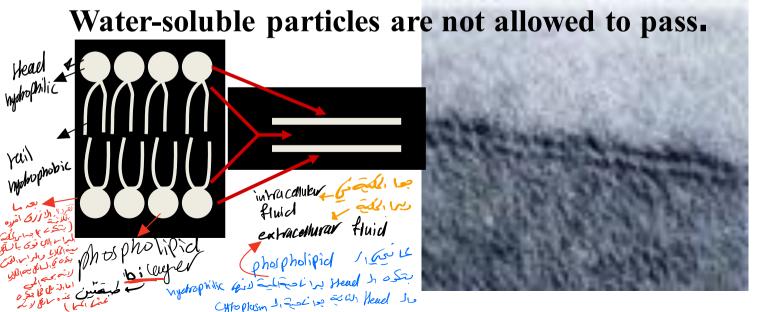
fluid

f

phospholipid molecules are arranged in

2 layers (phospholipid bilayer)

2- Protein molecules


3- Carbohydrate molecules

Trilaminar membrane

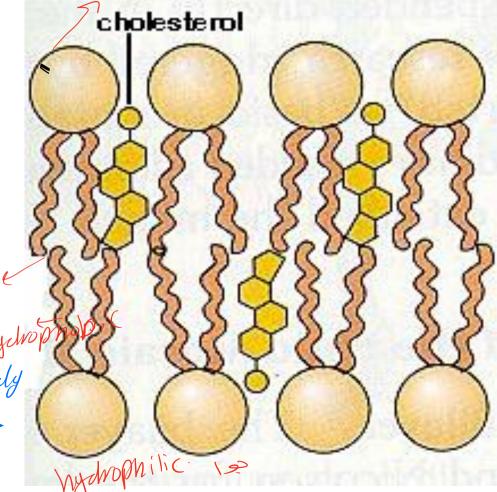
Deposition of osmium in the polar heads

molecules are responsible for the semipermeability of the cell membrane.

It allows lipid-soluble substances to pass passively by diffusion.

mychophilic v.

B- Cholestero


Control membrane

- fluidity
- stability
- permeability

Gbes phos pholipid in body

First tembreture 370 = 5

Fluid in wat we

Protein molecules

According to membrane proteins' location

2 Types:

1- Integral proteins

2-peripheral proteins

Can Cytosholetonh cis. Cytoplan JL, 251 acks

يعفي المدس عفو اللي عسل كرسياء ليعني المعني المعني

cerbo hydrate Oligosaccharide 、 Glycoproteins Glycolipid Integral Hydrophobic proteins Cholesterol a helix Figure 4-4c Cell and Molecular Biology, Sie (0 2008 John Wiley & Sons) Integral ciel and

Colps membrane 1 do G CLS 131 Ger

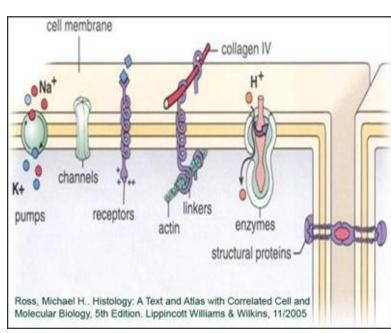
(nlegral Colowlet a rangosch Ges 15)

Integral proteins

cell membrane fluid in neutural any thing fat soluble one

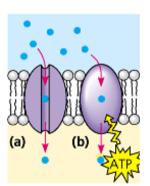
According to the functions of integral yours membrane cside, Inregral protein as we proteins:

6 forms CEN membrane Cise L six


- 1-Structural proteins
- 2-Pumps → MIN deside is €1
- 3-Enzymes
- 4-Linkers

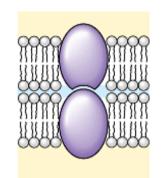
entra cellurali Zadi el L وما سل الخابية ٢ اللي عشبها

5-Channels

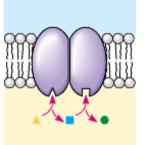

6-Receptors

imunity aprotetion recepter & receptor

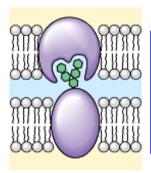
Transmembrane proteins


Protein Functions

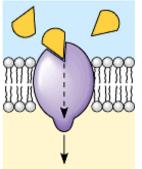
Transport


-Passive // Channel Proteins

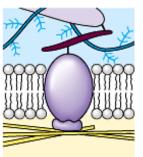
-Active // Protein Pumps


Intercellular joining

Intercellular junctions


Enzymatic activity

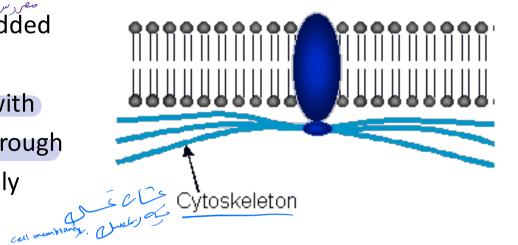
Membrane enzymes produce a variety of substances essential for cell function


Cell-cell recognition (Cell surface identity Marker)

Some glycoproteins serve as identification tags that are specifically recognized by other cells

Signal transduction (Cell surface Receptor)

Extracellular signaling molecule activates a membrane receptor creating intracellular response



Attachment to the cytoskeleton and extracellular matrix

Microfilaments or other elements bonded to membrane proteins, maintain cell shape and stabilizes the location of certain membrane proteins

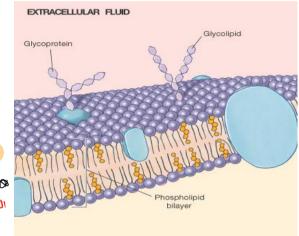
Peripheral proteins

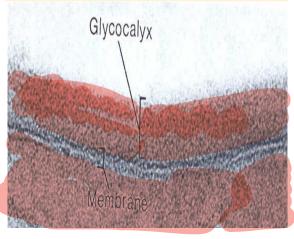
- They are not embedded into lipid bilayer
- loose association with membrane surface through ionic interaction mainly with integral protein

- They are usually located on the cytoplasmic surface and occasionally on the extracellular surface of the membrane.
- Functionally, They are associated with the cytoskeletal apparatus.

cell membrane Si cho in es a special coly attached hitrackion is 1 g la men y start to the first and the characterist substances extraction assices

Carbohydrate molecules

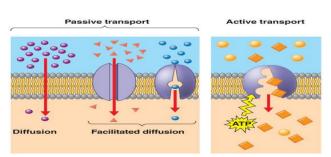

The cell coat = Glycocalyx

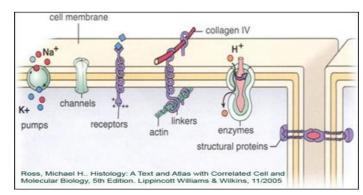

Red Bloud col (menther)

- Only at the outer surface of the membrane.
- Attached to lipid molecules to form glycolipids
- Attached to integral proteins to form glycoproteins

Function:

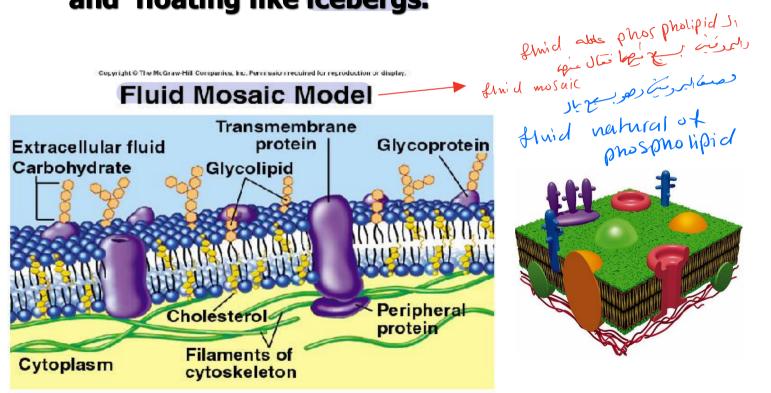
- 1- Protection
- 2- Identification markers (Recognition)
- 3- Adhesion
- 4- Receptors





receptor c protections Adresium astructuratolinhar * Maintaining the structural integrity of the cell

- Acting as an interface between the cytoplasm and the external environment.
- Controlling movements of substances in and out of the cell
- transport systems for specific molecules
- Regulating cell-cell interactions


Recognizing antigens, foreign cells and altered

Fluid mosaic model of the cell membrane

The membrane is composed of a sea of lipids (fluid) in which proteins (mosiac) are moving and floating like icebergs.

Functions of the cell membrane

Control exchange of materials

Small molecules (micromolecules)

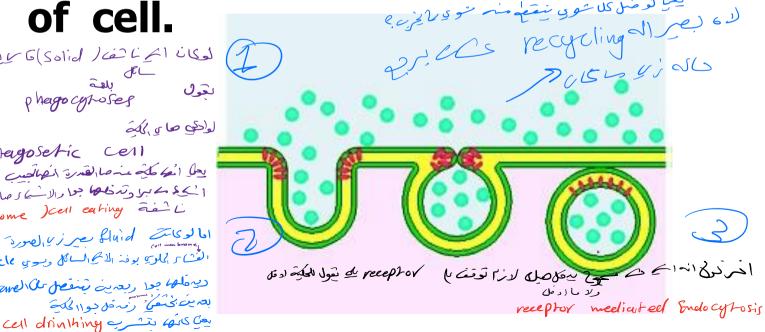
1-Simple diffusion

2-Active transport

Large molecules (macromolecules)

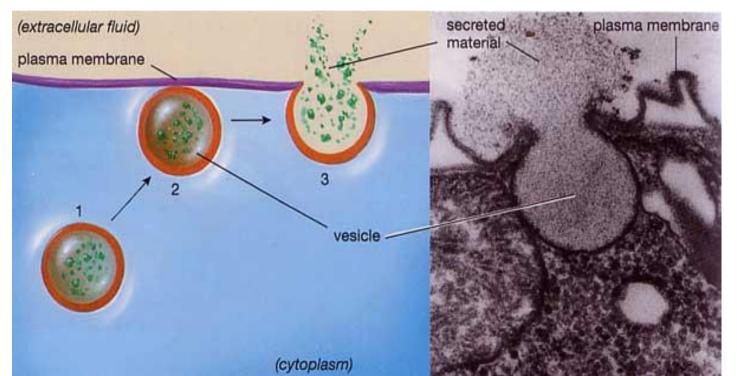
□ 1-Endocytosis

2- Exocytosis



Inside = internal

Intake of molecules to the inside

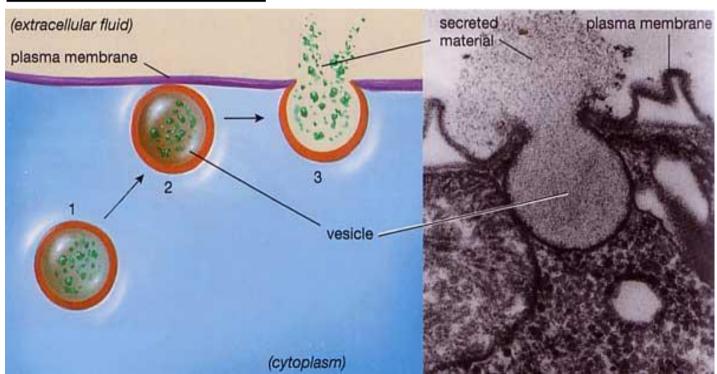

of cell.

part 6(Solid) a LAI illed p hago cyroses لواحكي صابي بكث Magosetic Cell يعل المه كلي عنه صارالقدي المهاكس الكا معبر وتدفاها جوا والاسكاد صابي phyorome) cell eating and L 1) le Dus hild exivilence الفن م إلمان بوفذ الايحالسائل وبوي الم Membrane a feir way se which بصين في عني رم خل دو ١١ كاك

Release of cell products into the extracellular environment.

Transport of macromolecule (vesicular transport) 1-Endocytosis

Inside = internal

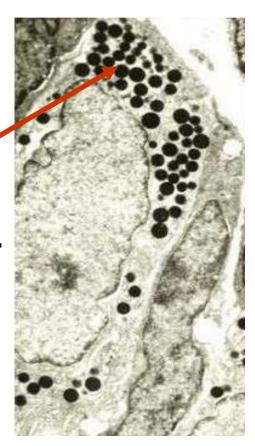

Intake of molecules <u>inside</u> the cell. <u>3 mechanisms:</u>

- Pinocytosis (cell drinking)
- Receptor-mediated endocytosis
- Phagocytosis (cell eating)

Exocytosis

External = outside

Release of cell products into the extracellular environment.



Types of exocytosis 1- Regulated secretion:

- stimulus-dependent
- secretory granules

2- Constitutive secretion:

- continuous
- without a stimulus
- transport vesicles

