

Autonomic Nervous System

Lecture-5 : Topics

- Functions of ANS
- Effect of Sympathetic & Parasympathetic stimulation
- Overall difference between 2 divisions of ANS

Learning Objectives

 Effects of sympathetic and parasympathetic neurotransmitters on target organs and tissues.

Sympathetic Effects

- Fight, Fright or flight response
- Release of Neurotransmitters (NT)-

Norepinephrine (NT) from postganglionic fibers

>Epinephrine (NT) from adrenal medulla

Sympathetic Effects

- Mass activation prepares for intense activity
 - >Heart rate (HR) increases
 - Bronchioles dilate
 - >Blood [glucose] increases

Sympathetic Effects

- GI motility decreases
- Contraction of sphincters
- Relaxation of
 - Detrusor muscle
 - ➢Ciliary muscle
- Mydriasis

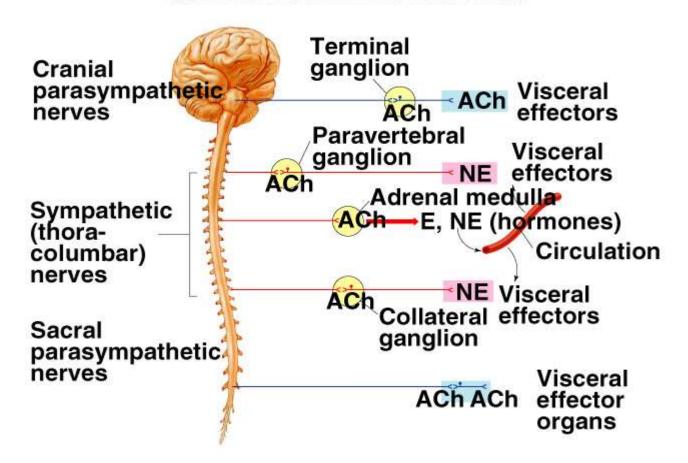
Parasympathetic Effects

- Normally not activated as a whole
 - Stimulation of separate parasympathetic nerves.
- Release ACh as NT
- Relaxing effects-
 - Decreases HR.
 - Dilates visceral blood vessels.
 - >Increases digestive activity.

Parasympathetic Effects

- Bronchonstriction
- GI motility increases
- Relaxation of sphincters
- Contraction of
 - Detrusor muscle
 - ➢Ciliary muscle
- Miosis

Adrenergic and Cholinergic Synaptic Transmission


- ACh is NT for all preganglionic
 Sympathetic fibers
 - Parasympathetic fibers
- Transmission at these synapses is termed cholinergic
- All preganglionic fibers terminate in autonomic ganglia

Adrenergic and Cholinergic Synaptic Transmission

- ACh is NT released by -
 - Most postganglionic parasympathetic fibers
 - Some postganglionic sympathetic fibers
- Postganglionic autonomic fibers innervate the target tissue

Adrenergic and Cholinergic Synaptic Transmission

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Adrenergic Synaptic Transmission

- Transmission at these synapses is called adrenergic:
 - >Norepinephrine
 - released by most postganglionic sympathetic nerve fibers.
 - ➢Epinephrine,
 - released by the adrenal medulla
- Collectively called Catecholamines

- Beta adrenergic receptors:
 - Produce their effects by stimulating production of cAMP
 - >NE binds to receptor
 - ➢G-protein dissociates.

- Depending upon tissue, either α subunit or $\beta\gamma$ -complex produces the effects
 - Alpha subunit-
 - Activates adenylate cyclase
 - Producing cAMP
 - cAMP activates protein kinase
 - Opening ion channels

• Alpha₁ adrenergic receptors:

Produce their effects by the production of Ca²⁺

- >Epi binds to receptor
- ➤Ca²⁺ binds to calmodulin
- Calmodulin activates protein kinase, modifying enzyme action

• Alpha₂ adrenergic receptors:

- I. Located on Presynaptic terminal
 - Decreases release of NE.
 - Negative feedback control.
- 2. Located on postsynaptic membrane.
 - When activated, produces vasoconstriction

- Has both excitatory and inhibitory effects.
- Responses due to different membrane receptor proteins.
 - $> \alpha_1$: constricts visceral smooth muscles.
 - $\geq \alpha_2$: contraction of smooth muscle.
 - $> \beta_1$: increases HR and force of contraction.
 - $>\beta_2$: relaxes bronchial smooth muscles.
 - $>\beta$ 3: adipose tissue, function unknown

Responses to Cholinergic Stimulation

- Cholinergic fibers-.
 Release ACh as NT
 - All somatic motor neurons,
 - All preganglionic neurons
 - Most postganglionic parasympathetic neurons
 - Some postganglionic sympathetic neurons

- Somatic motor neurons
- All preganglionic autonomic
 - neurons
- Postganglionic axons

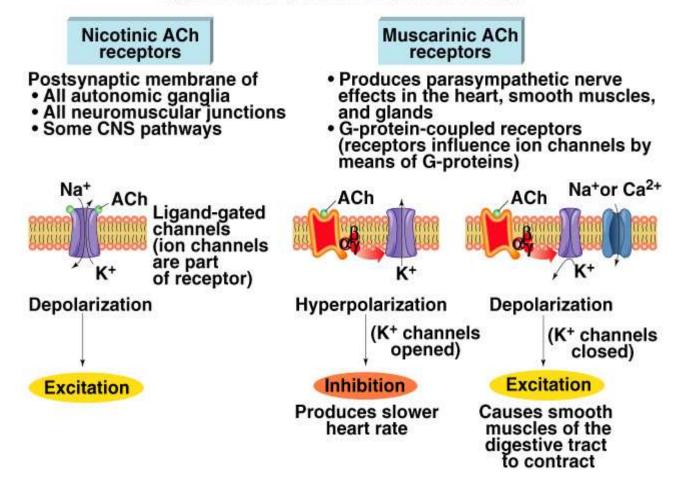
Excitatory

Excitatory

- Excitatory or
- Inhibitory

Muscarinic receptors > Ach binds to receptor \geq Requires the mediation of G-proteins $>\beta\gamma$ -complex affects-Opening a channel or Closing a channel or Activating enzymes

• Nicotinic receptors (ligand -gated)


>ACh binds to 2 nicotinic receptor binding sites.

Causes ion channel to open within the receptor protein.

♦ Opens a Na⁺ channel.

Always excitatory

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Other Autonomic NTs

 Certain nonadrenergic, noncholinergic postganglionic autonomic axons produce their effects through other NTs
 ATP
 NO

Organs With Dual Innervations

- Dual innervations
- Innervations by both
 - Sympathetic fibers
 - Parasympathetic fibers
- Most visceral organs receive dual innervations
- Effects of dual innervations
 - Antagonistic
 - Complementary
 - Cooperative

Organs With Dual Innervations

- Antagonistic :
 - Sympathetic and parasympathetic fibers innervate the same cells.
 - Actions counteract each other.
 - Heart rate.
- Complementary:
 - Sympathetic and parasympathetic stimulation produces similar effects.
 - Salivary gland secretion.
- Cooperative:
 - Sympathetic and parasympathetic stimulation produce different effects that work together to produce desired effect.
 - Micturition.

Organs Without Dual Innervations

- Regulation achieved by increasing or decreasing firing rate.
- Organ receive only sympathetic innervations >Adrenal medulla
 - >Arrector pili muscle
 - ➤Sweat glands
 - Most blood vessels.

Applied

Horner's syndrome

- Characterized by-
 - Constriction of the pupil
 - Enophthalmos
 - Drooping of eye lid
 - >Anhydrosis on affected side of face
- Occurs due to-
 - Damage of stellate ganglia
 - Paralysis of Cervical Sympathetic nerve trunk

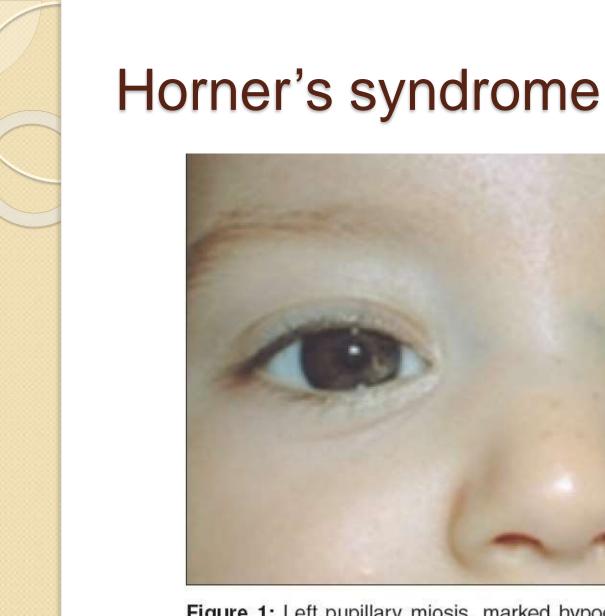


Figure 1: Left pupillary miosis, marked hypochromia of the left iris, ipsilateral mild ptosis and left hemifacial anhidrosis

Drugs acting on autonomic ganglia

Increases activity

 Direct effect >Acetylcholine Nicotine (Low doses) Indirect effect (ACE inhibitors) Physostigmine >Neostgmine Parathion **DFP**

Decreases activity

- Ganglion blockers-
 - Hexamethonium
 - Macamylmamine
 - Pentolinum
 - Trymethaphan

Increases activity

- Release NE (TEA)
 - Tyramine
 - Ephedrine
 - > Amphetamine

Decreases activity

Block NE Synthesis

> Metyrosine

- Block Storage
 - Reservine
 - ≻Guanethidine
- Prevent Release
 - ➢ Bretylium
- False transmitters
- Methyldopa

Drugs acting on Muscarinic receptors

Increases activity

> Acetylcholine

Decreases activity

Atropinescopolamine

Drugs acting on Beta adrenergic receptor

Increases activity

- β stimulators
 > Isoproterenol
 β₂ stimulators
 - Salbutamol
 - Terbutaline

- Decreases activity
- β blockers
 - > Propranolol
 - Metaprolol
- β₁ blockers
 - ≻Atenolol
- β_2 blockers
 - Butoxamine

Drugs acting on Alpha adrenergic receptors

Increases activity (α₁ stimulators) Methoxamine Phenylepinephrine

Decreases activity

 $(\alpha \text{ blockers})$

- Phenoxybenzamine
- Phentolamine

Prazocin (α_1 blockers)

> Yohimbine (α_2 blockers)

Thank You!!!

and the second s