General Microbiology Biochemical reactions Lab 5 2021-2022

Dr. Mohammad Odaibat Department of Microbiology and Pathology Faculty of Medicine, Mutah University

Objective

To become familiar with the biochemical tests used to isolate gram negative bacteria

Enterobacteriaceae

Identification of Enterobacteriaceae

- 1. Using selective and differential media
- 2. Using special biochemical reactions

General Characteristics

- Gram-negative bacilli
- Oxidase –ve
- Catalase +ve
- Ferment glucose with or without gas production
- facultative anaerobes
- If motile, motility by flagella

Identification of *Enterobacteriaceae* 1-Using selective and differential media

Enterobacteriaceae divided into two main groups according to lactose fermentation

Enterobacteriaceae

Lactose fermenters (Lf)

E. coli, Klebsiella, Enterobacter

Non Lactose fermenters (nLf) Salmonella, Shigella, Proteus

There are several selective and differential media used to isolate and distinguish between Lf & nLf including

✓ MacConkey agar

✓ Salmonella Shigella agar (SS agar)

Identification of *Enterobacteriaceae* 2-Using special biochemical reactions The differentiation of the principle groups of *Enterobacteriaceae* Can be accomplished on the basis of <u>their biochemical prosperities</u> and enzymatic reactions in the presence of the specific substrate

> One important group of biochemical reactions is: IMVIC

I: Indoile
M: Methyle red
V: Vogus proskaur
C: Citrate utilization tests

IMViC: Indole test

Principle

- Some microorganisms can metabolize tryptophan by tryptophanase
- ✓ The enzymatic degradation leads to the formation pyruvic acid, indole, and ammonia
- ✓ The presence of indole is detected by addition of Kovac's reagent

Media tryptophan or peptone broth

Results

A bright pink color on the top layer indicated the presence of indole

IMViC: Methyl Red, Voges Prosakaur

Principle

Methyl Red test: to determine the ability of bacteria to oxidize glucose with the production and stabilization of high acidic end products.
 Ex: Lactic acid, fromic acid

✓ Voges Prosakaur: to determine the ability of bacteria to produce non-acidic or neutral end products

Ex: acetylmethyl carbinol

Procedure

- ✓ Inoculate the tested organism into ONE tube of MR-VP broth
- \checkmark After incubation: pour 1/3 of the broth into a clean tube
- ✓ Run the tests as following
- 1. For methyl red: run in the tube containing the 2/3 by adding 6-8 drops of **methyl red reagent**

IMViC: Methyl Red, Voges Prosakaur

- 2. For **Voges Prosakaur**: in the tube containing the 1/3
- add 12 drops of **Barritt's reagent** $A(\alpha$ -naphthol), Mix
- add 4 drops of **Barritt's B reagent (40% KOH)**, Mix
- Let undisturbed for at least 1 hour
- Methy red is red in pH under 4.4, yellow in pH over 6.2

Yellow or orange: Negative MR (Klebsiella)

✓ Pink: Positive VP (*Klebsiella*)
 ✓ No pink: Negative VP (*E. coli*)

IMViC: Citrate utilization test

Purpose

To determine the organisms that are able to ferment citrate as a sole carbon source

Principle

IMViC: Citrate utilization test

Results

Positive results: blue color (*Klebsiella*) Negative results: green color (*E. coli*)

Urease test

Purpose

To isolate organisms that are urease positive

Urease test

Sugar fermentation test

Purpose

Carbohydrate fermentation tests detect the ability of microorganisms to ferment a specific carbohydrate.

Media

Sugar media

Sugars used

- Glucose - Lactose - Maltose - Mannitol - Sucrose

Results pH indicator: Phenol-Red is red at pH > 7 If fermentation occurs, the acidic by-products will change the from red to yellow.

Sugar fermentation test

Bacterial Barcodes

E. Coli

Salmonella

5500¹¹70150

	S. Dysenteriae	S. flexneri	S. sonni	Klebsiela	E. coli	V. cholera
Glucose	A, No G	A, No G	A, No G	A, G	A, G	A, No G
Lactose	-ve	-ve	A, No G	A, G	A, G	A, No G
Maltose	-ve	-ve	-ve	A, G	A, G	A, No G
Mannitol	-ve	A, No G	A, No G	A, G	A, G	A, No G
Sucrose	-ve	-ve	-ve	A, G	A, G	A, No G
indole	-ve	-ve	-ve	-ve	+ve	+ve
MR	+ve	+ve	+ve	-ve	+ve	
VP	-ve	-ve	-ve	+ve	-ve	
Citrate	-ve	-ve	-ve	+ve	-ve	
Urease	-ve	-ve	-ve	+ve	-ve	
H2S	-ve	-ve	-ve	-ve	-ve	

Key

A: acid No G: No gas -ve: negative

+ve: positive

Analytical Profile Index System (API) for bacterial identification

