

### General Microbiology Course Lecture 15 2021-2022

### Introduction to the Oncoviruses

Dr. Mohammad Odaibat Department of Microbiology and Pathology Faculty of Medicine, Mutah University

### Introduction

- Cell growth: is the cell proliferation (the increase in cell numbers that occurs through repeated cell division).
- Cell growth is regulated by two groups of regulatory genes:
  - A. Proto-oncogenes (cellular oncogene, c-onc)
    - are normal genes which control cell proliferation, but which have the potential to contribute to cancer development if their expression is altered (changed into oncogenes).
    - codes for:
      - i. Growth factors
      - ii. Receptors
      - iii. Signal transduction proteins.

### Proto oncogenes vs tumor suppressor genes

- **<u>Tumor Suppressor Genes</u>** (Gatekeepers and Caretakers):
- **They function** as the "brakes" of the car in three primary ways by:
  - inhibiting cell growth,
  - fixing broken DNA,
  - or causing a cell to die.
    - Examples: P53, Rb

An important difference between oncogenes and tumor suppressor genes is that **oncogenes result from the activation (turning on) of protooncogenes**, but tumor suppressor genes cause cancer when they are inactivated (turned off).

### Proto oncogenes vs tumor suppressor genes

#### Normal Cell Division



### Protooncogenes vs tumor suppressor genes



Activated oncogene

**Inactivated Tumor suppressors** 





## p53 signaling pathway



### Changes in cell that leads to transformation

- Mutations
- Deletions
- Recombinations
- Transpositions
- Epigenetic alterations (DNA methylation, imprinting)

• Viral infections (oncoviruses)

## Early History of Oncoviruses

- The theory that cancer could be caused by a virus began with the experiments of Oluf Bang and Vilhelm Ellerman in 1908 who first show that avian erythroblastosis (a form of chicken leukemia) which is caused by avian erythroblastosis virus could be transmitted by <u>cell-free extracts</u>.
- This was subsequently confirmed for solid tumors in chickens in 1910-1911 by Peyton Rous.
- Later on they called oncoviruses.

### Oncoviruses

- An oncovirus is a virus that can cause cancer.
- It refers to any virus with a DNA or RNA genome causing cancer and is synonymous with "tumor virus" or "cancer virus".
- Most viruses are non-transforming however, they may play a role in reducing the host cell's ability to inhibit apoptosis.
- Cells that are resistant to apoptosis with help of the viral genes that they express are more likely to survive genomic damage that will predispose to later neoplastic changes.

### Human Oncoviruses Replication Strategies

### **1. Create Conditions for replication:**

- Metabolic reprogramming.
- Inducing angiogenesis.

### 2. Maximize virus production:

- Prevent apoptosis until virion matures.
- Immune evasion.

### 3. Multiply latent proviruses:

- Cell survival.
- Cell immortalization.

Two mechanisms that an oncovirus can cause cancer

**Direct acting carcinogenic viruses** 

# Insertion of its genetic material into the host cell genetic material.

Indirect acting carcinogenic viruses

**A. Triggering chronic inflammation and oxidative stress:** that persistently damage local tissues.

- B. By producing immunosuppression.
- C. By both mechanisms (A and B).

#### **Direct acting carcinogenic viruses**

The Direct acting carcinogenic viruses can directly trasform cells by:

- 1. Some viruses replication cycle require the integration of the viral genome into the host genome, commonly transform because integration deregulates expression of cellular oncogenes or tumor suppressor genes (insertional mutagenesis).
- 2. Through the expression of its own oncogenes without the need to integrate (Ex, EBV).

#### **Direct acting carcinogenic viruses**



**Direct acting carcinogenic viruses** 





Indirect acting carcinogenic viruses

### This happened through two main mechanisms:

- **A. triggering chronic inflammation and oxidative stress:** that persistently damage local tissues;
- Example: HBV and HCV; chronic inflammation produced by persistent infection is a major risk to develop hepatocellular carcinoma (HCC).
- **B. by producing immunosuppression:** that reduces or eliminates anti-tumor immune surveillance mechanisms.
- <u>Example</u>: HIV ; patients with low T cell counts frequently develop lymphomas associated with EBV or KSV infection.
- C. By both mechanisms (A and B):

Example: HBV and HCV

## Mechanism of Oncogenecity

#### Indirect acting carcinogenic viruses

#### A. triggering chronic inflammation and oxidative stress



Chemokines, Cytokines, Mutagenic ROS, MN Mononuclear cells, PMN Polymorphonuclear cells

## Mechanism of Oncogenecity

#### Indirect acting carcinogenic viruses

#### B. by producing immunosuppression:

Cancer CD8 controlled viral infection CD8 D8 CD8 Immunosuppression



## Calcification of oncogenic viruses

### **DNA viruses**

#### **1-** Human papilloma virus (HPV):

 $\checkmark$  Causes transformation in cells through interfering with tumor suppressor proteins such as p53.

✓ cause cervical cancer.

#### 2- Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8):

• is associated with Kaposi's sarcoma, a type of skin cancer.

**3- Epstein-Barr virus (EBV or HHV-4):** is a herpes virus that's spread through saliva. EBV infection increases the risk of Burkitt lymphoma, some types of Hodgkin's and non-Hodgkin's lymphoma and stomach cancer.

**4- Human cytomegalovirus (CMV or HHV-5)** is associated with mucoepidermoid carcinoma and possibly other malignancies.

### Calcification of oncogenic viruses

### **RNA viruses**

**Retroviruses:** 

Human T-cell leukemia virus I (HTLV-I),: Some T-cell leukemia.

Human T-cell leukemia virus II (HTLV-II): Some cases of hairy cell leukemia

Human immunodeficiency virus: Lymphoma, Kaposi's sarcoma.