Experiment 4
 Limiting Reactant

Abstract

Note: Please be sure that you review the following concepts and ideas before you come to the lab.: Mole, atomic mass (AM), môar mass (MM), calculations of the number of moles from mass and AM or MM.

The amounts of the products in chemical reactions may be determined by controlling the relative amounts of reactants. The reactants may be mixed according to the stoichiometry of the reaction. In this case, the mixing is called stoichiometric mixing and no limiting reactant involved. If the mixing is not according to the stoichiometry of the reaction it is called nonestoichiometric mixing, and the progress of the reaction is controlled by one of the reactants, called limiting reactant. Of course, the other reactants are in excess. Controlling the reaction means controlling the amounts of the products and the unreacted excess reactants. All of the limiting reactant is consumed in the chemical reaction.

The concept of limiting reactant:
50 siso
The basic requirement for stoichiometric calculations is BALANCED
CHEMICAL EQUATION. Otherwise, no correct calculations are produced.

Consider the following two examples:

The chemical equation is balanced; the mole ration of the reactants is $1: 1$.
Any mixing ratio that is different from one to one is called none stoichiometric and the reaction must involve a limiting reactant.

 inning of,
 coal, 3 controls the region (the amount pithier

tho (fy) The concept of limiting reactant may be illustrated through the following table:

According to the table above:

Reaction 1:

, Ucisicicic
, (c)ss

$$
28 \times 2^{2}
$$

(此)

The first trial is stoichiometric mixing, no excess reactants.
CH_{4} is the limiting reactant in the second trial, (1.2 mole of $\mathrm{H}_{2} \mathrm{O}$ is unreached).
$\mathrm{H}_{2} \mathrm{O}$ is the limiting reactant in the third trial, ($1.1 \mathrm{~mol}^{\mathrm{mof}} \mathrm{CH}_{4}$ is unreacted).
Homework: calculate the amounts masses of H_{2} and CO produced in each case.

Reaction 2:

Trial number 4: The mixing is stoichiometric, no excess reactants.
Trial number 5: The mixing is none stoichiometric, H_{2} is limiting reactant,
2.0 moles of N_{2} unreacted, 2.0 moles of NH_{3} are produced.

Trial number 6: The mixing is none stoichiometric, H_{2} is limiting reactant, 0.33 moles of N_{2} unreacted, 3.33 moles of NH_{3} are produced.

Trial number 7: The mixing is none stoichiometric, N_{2} is limiting reactant, 1.0 mole of H_{2} unreacted, 4.0 moles of NH_{3} are produced.

Homework: calculate the masses number of masses NH_{3} produced in each case.

The number of moles may be converted into masses by the use of the molar masses (MM). All of the numbers in the table above can be converted into masses by the use of the relation below:

$$
\text { Mass }=(\text { number of moles })(\mathrm{MM})
$$

MM (g/mol):
$\left(\mathrm{CH}_{4}\right)=16 ;\left(\mathrm{NH}_{3}\right)=17 ;(\mathrm{CO})=28 ; \mathrm{H}_{2}=2.0 ; \mathrm{N}_{2}=28 ; \mathrm{H}_{2} \mathrm{O}=18$

The Experiment:
Solid unknown mixture of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$

$$
\underline{\square}
$$

Molecular equation: (balanced)

- From the balanced equation:
Baum chloride sodum sulfate

Caterer $\mathrm{MM}(\mathrm{g} / \mathrm{mol}): \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=244.27 ; \mathrm{Na}_{2} \mathrm{SO}_{4}=142.05 ; \mathrm{BaSO}_{4}=233.33$

 Number of moles of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=$ number of moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ $=$ number of moles of $\mathrm{BaSO}_{4} \mathrm{~A}_{4}$

Fast Look at the procedure:
Part A: Take an exact mass $(1-2 \mathrm{~g})$ of the $\mathrm{Na}_{2} \mathrm{SO}_{4} / \mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ unknown mixture, add it to about 150 mL of de-ionized water, insoluble barium sulfate, BaSO_{4}, will be formed. Collect the precipitate by filtration, then wash, dry, and weight. Record the mass of your precipitate.

Part B: Determination of the limiting reactant.
This is done through two precipitation tests with solutions of 0.5 M of each of BaCl_{2} and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ as follows:
i- Test for excess $\mathrm{SO}_{4}=:-\mathrm{I}^{2}$ ning 2 drops of $0.5 \mathrm{M} \mathrm{BaCl}_{2}$ solution to the supernatant, if a precipitate is formed then it should be BaSO_{4}. This means that $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ is in excess and $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is the Limiting Reactant. Otherwise $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is the L.R.
 $i i-$ Test for excess Ba^{2+} :-

Add 2 drops of $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution to the supernatant, if a precipitate is formed then it should be BaSO_{4}. This means that $\left(\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ is in excess and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is the Limiting Reactant. Otherwise $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is the L.R. and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is in excess.

Example: (How to do the calculations)

Consider the following data obtained from a reaction between $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The following data were obtained:

The mass of the unknown mixture $=1.59 \mathrm{~g}$ and fitration
The mass of the precipitate BaSO_{4} [after washing and drying] $=0.188 \mathrm{~g}$ The test reveals that the $\underline{\mathrm{L} . \mathrm{R}}$ is $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

What is the mass percent of the salt mixture?

Solution:

Number of moles of the product $\mathrm{BaSO}_{4}=0.188 \mathrm{~g} / 233.33 \mathrm{~g} / \mathrm{mol}$
Buch cisour v, ís oblou

$$
=8.056 \times 10^{-4} \mathrm{~mol}
$$

From the balanced chemical equation,
\# of moles of the L.R $\left(\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)=\#$ moles of $\mathrm{BaSO}_{4}=8.056 \mathrm{X10}^{-4} \mathrm{~mol}$

$$
\begin{aligned}
& \therefore \text { Mass of } \mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}=\left(8.056 \times 10^{-4} \mathrm{~mol}\right)(244.27 \mathrm{~g} / \mathrm{mol})=0.197 \mathrm{~g} \\
& \text { Mass } \%\left(\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\right)=[0.197 \mathrm{~g} / 1.59 \mathrm{~g}] \times 100 \%=12.39 \% \\
& \text { Mass \% }\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)=100 \%-12.39 \%=87.61 \%
\end{aligned}
$$

Experimental procedure:

Some important experimental steps that are done are illustrated below:园
\rightarrow Digestion: This is done to encourage the crystal growth over nucleation process in ordered to have large particle size ppt., which is easier to filter.

Digestion process is experimentally governed by controlling heat rate

and stirring. It is performed by slow heating $\left(80-90^{\circ}{ }^{\circ} \mathrm{C}\right)$, with no stirring, and covering the beaker with watch glass. This keeps the particles warm, which increases the crystal growth.

- Decantation; (see the technique in the internet)
- Filtration (Gravity filtration); (see the technique in the internet)

Minimum of two trials is recommended

Important Note and Example:

Study the example below between sodium phosphate dodecahydrate and barium chloride dihydrate. Barium phosphate is precipitated in the reaction. The stoichiometric ratio between the reactants is not $1 ; 1$. Actually it is $2: 3$. If the stoichiometric ratio is not $1: 1$, much more care is required to find the limiting reactant and do the rest of the calculations.

Proper amount of water is added to 0.942 g of an unknown solid mixture of sodium phosphate dodecahydrate, $\mathrm{Na}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$, and barium chloride dihydrate, $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Barium phosphate, $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, precipitated. The mass of the precipitate after filtration, washing and drying was found to be 0.188 g . A test revealed that $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was the limiting reactant, calculate the masses of the components of the unknown solid mixture and its percentage composition?

Molecular equation:

$2 \mathrm{Na}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}+3 \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})} \longrightarrow$

$$
\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})} \downarrow+6 \mathrm{NaCl}+30 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

Mass of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$ produced $=0.188 \mathrm{~g}$
Moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$ produced $=$ mass $/ \mathrm{MM}$

$$
=0.188 \mathrm{~g} / 601.93 \mathrm{~g} / \mathrm{mol}=3.12 \times 10^{-4} \mathrm{~mole}
$$

The L. R is $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, so,
Moles of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ reacted $=(3)\left(\right.$ moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$ produced $)$

$$
=(3)\left(3.12 \times 10^{-4}\right)=9.370 \times 10^{-4} \mathrm{~mol} .
$$

Mass of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ reacted $=($ moles $)(\mathrm{MM})$

$$
=\left(9.370 \times 10^{-4} \mathrm{~mol}\right)(244.27 \mathrm{~g} / \mathrm{mol})=0.2289 \mathrm{~g}
$$

So, mass of $\mathrm{Na}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}=$ mass of sample - mass of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
=0.942 \mathrm{~g}-0.2289 \mathrm{~g}=0.713 \mathrm{~g}
$$

Mass $\%$ of $\mathrm{Na}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ in the sample

$$
\begin{aligned}
& =(0.713 \mathrm{~g} / 0.942 \mathrm{~g})(100 \%)=75.70 \% \\
\% \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} & =100 \%-75.70 \%=24.30 \%
\end{aligned}
$$

The End

