Vitamins

Classification

- Vitamins are classified into two major groups: velutell to bone heath formation C Fat-soluble (4 fat soluble) Vitamin $\frac{A}{V}, \underline{D}, \underline{E}, K$.
- Water-soluble (9 water soluble)

B_{2} (riboflavin)
B_{3} or Vitamin P or Vitamin PP (niacin)
B_{5} (panthotenic acid)
2 (n) function 1,0
B_{6} (pyridoxine and pyridoxamine)

B_{7} or Vitamin H (biotin) B_{12} (cobalamin) in a require amount
 vitamin

auti inferbibity
\approx Odthe related ro
Souritiay
$-v_{E}$
Digesting and absorbing water-soluble vitamins

Thiamine (B 1)

Chemistry:

- A substituted pyrimidine joined by a methylene bridge to a substituted thiazole.
Requirements: $\mathbf{1 - 1 . 5} \mathbf{~ m g} /$ day for adults.
(Higher needs in pregnancy, high CHO diet)

Plant sources: whole grains (unrefined cereal grains), beans, peas, nuts and bran.

Animal sources: liver, heart, kidney and milk.
Yeast
Activation (Co-enzyme):
Conversion of thiamin to its active form thiamin pyrophosphate (TPP)

Absorption

- At low concentrations, the process is carrier-mediated.

- At higher concentrations absorption also occurs via passive diffusion.
- It can be inhibited by alcohol consumption

 mainly albumin.

Nossatimemervideric

- Approximately 90% of total thiamine in blood is in RBCs.

Cellular uptake

- Thiamine uptake and secretion appears to be mediated by a soluble thiamine transporter that is dependent on Na^{+}[Thiamin transporter$\mathbf{1} \& 2$ (human THTR-1 \& 2)].
Storage: of thiamine occurs in muscle, heart, brain, liver, and kidneys.
Fxcrotion. Thiamine and itc metaholites are eycreted in urine

Thiamin: activation

Thiamin

ATP-dependent thiamin

$\xrightarrow[\text { Thiamin }]{\text { Thiamine }}+\underset{\text { ATP }}{\text { APP }}+\underset{\text { AMP }}{\text { TPI }}$ (EC 2.7.6.2).

ATP

Oxidative decarboxylation of pyruvate phosprat

Functions

- TPP serves as a coenzyme transferring an activated aldehyde unit in the following enzymatic reactions:

1. Oxidative decarboxylation of α-keto acids.
2. Transketolase reaction (pentose phosphate pathway; PPP). It is used for the biosynthesis of pentose sugars deoxyribose and ribose sinn $_{\text {smame }}$
3. Acetylcholine synthesis which is one of neurotransmitters and for myelin synthesis.

- Important in:
- Producing energy from carbohydrates
- Nerve function
- Muscle function
- Appetite
- Growth
- Therapy: It can be used for treatment of Heart failure \& Alzheimer disease.

Causes:

- Low intake, malabsorption, and/ or defective phosphorylation to TPP.
- Antithiamine factors: These are enzymes present in the viscera of shell fish and many microorganisms. They cause cleavage of thiamin producing pyrimidine and thiazole rings so they are called thiaminases. These antithiamine factors cause an isolated thiamine deficiency. Plant thiamine antagonists are heat-stable; for examples caffeic acid, and tannic acid. These compounds interact with the thiamine to oxidize the thiazole ring, thus rendering it unable to be absorbed.
- Alcoholism : Chronic alcoholism gives the manifestation of moderate thiamine deficiency. This is called Wernike korsacoff, syndrome. Alcohol interferes with absorption
- Excessive loss (diuretics).

Manifestations of thiamine deficiency

1. Mild deficiency: leads to
? Gastrointestinal complaints
? Weakness.
2. Moderate deficiency:

Wernike korsacoff, syndrome
3 Peripheral neuropathy.
? Mental abnormalities, eenrayy "emiduch
3. Severe thiamin deficiency
A. Beriberi uni iramen

- Dry beriberi is characterized by advanced neuromuscular symptoms:
? Atrophy and weakness of the muscles
? Peripheral neuropathy
3 Memory loss.

- Wet beriberi: the previous symptoms (dry beriberi) are coupled with oedema.
B. Wernike korsacoff , syndrome

Riboflavin (B 2)

Chemistry: It consists of a flavin ring attached to the sugar alcohol D- ribitol.
Co enzyme forms $\rightarrow \operatorname{Cosef}, \operatorname{dB},(a A)$ Flavin mononucleotide (FMN) is formed by ATP-
 dependent phosphorylation of riboflavin.

- Flavin adenine dinucleotide (FAD) is synthesized by a further reaction with ATP in which the AMP moiety 8 ibo flavin of ATP is transferred to FMN. Biosynthesis of FMN No cc and FAD occurs in most tissues.

Absorption

 Rtim end in diet, riboflavin (RF) exists in the free and FMN and FAD forms. They are releated hydrolyzed to free Rf by intestinal phosphatases.
in $V B_{1}=\mathrm{Ja}$ and RF absorption in the intestines involve a specific carrier-mediated
pynpurs prol mechanism for Rf uptake located at the apical membrane \& across the
encyme BLM.
$\mathrm{g}_{2} 2$ - Both RFT-1 (RF transporter1) and RFT-2 are expressed in intestine.
retuse RFT-3 is more brain- specific.

Sources

? Animal origin: liver and beef, milk, dairy products, fish, eggs, nuts
? Yeast
? Plant origin: Green leafy vegetables, nuts, of smaller quantities in cereals.

Function:

- Involved in energy metabolism (ATP production): Participate in

3 Oxidative decarboxylation \rightarrow
? Citric acid cycle
$\frac{E A D}{L_{\text {which }}}$ is ${ }^{2}$
? Beta-oxidation of fatty acids
? Electron transport

- Associated with antioxidant glutathione reductase (utilizes an FAD prosthetic group and NADPH to reduce GSSG to two GSH.) GS-SG + NADPH + $\mathrm{H}^{+} \rightarrow 2 \mathrm{GSH}+\mathrm{NADP}^{+}$
ripeptide consisted of "\$ "acid respo nsible for

0 und wester 12 dissocintion andeeze soup unstaible

1. Chemical structure of vitamin B 2 is \qquad
[flavin + ribitol], fluorescent, light sensitive, heat stable.
2. Active form (Co-enzyme) of vitamin B2 is
[FIN \& FAD]
3. Its function is to act as
[prosthetic groups of oxidoreductases]
4. Reactions requiring FAD are:
a- [oxidative decarboxylation of a keto acids as PDH
b- [C.A.C.] \longrightarrow Energy (ATP)
c [\mathbf{b}-oxidation of F.A.] $\longrightarrow \quad$ Energy (ATP)
molecules to protect as.
as antioxidant agents.
\longrightarrow Energy (ATP)

.
molecules
to protect as.

FM
FAD

FMNH2
FADH2
symptoms of deficiency
Related to Energy production (skin \& mucous membrane inflammation). \rightarrow inflammation of the angle of the Glossitis \& angular stomatitis (Inflammation of the redness lining of mouth and tongue).

- Keratitis , dermatitis (Dry and scaling skin).
- Cheilosis (cracked and red lips).
- Ocular manifestations (vascularization of cornea)

* it's light -labile vitamin (will be degraded by light).

NB. :

- Deficiency occurs in newborn infants with $\$$ will be associated of dacian hyperbilirubinemia who are treated by phototherapy
Sal treated by photonnes inside container (ail) Ginwhichits under photosensitivity seel
\qquad \rightarrow it will be cleaved into Slain maleate. *so we have to supplement them with vit.B2

Chemistry:

Niacin (nicotinic acid)

- Nicotinic acid is a carboxylic acid derivative of pyridine.

Synthesis: PLP (vit. B6)

derived hom Tryptophan $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ Niacin (vit.B3) (insufficient)

- most people require dietary sources of both tryptophan and niacin.

Sources:

- Food stuffs containing nicotinic acid: as B_{1}
- Tryptophan containing proteins

Functions: niacin required for the synthesis of NAD^{+}(nicotinamide adenine dinucleotide) and (NADP ${ }^{+}$(nicotinamide adenine di-nucleotide phosphate) NAD^{+}and NADP^{+}are coenzymes of many oxidoreductase enzymes.
Generally, NAD^{+}-linked dehydrogenases catalyze oxidoreduction reactions in oxidative pathways, e.g. the citric acid cycle.

- Whereas NADP^{+}-linked dehydrogenases are often found in pathways concerned with reductive synthesis e.g. the pentose phosphate pathway.
- $\mathrm{NAD}^{+}+\mathrm{AH}_{2}$

$$
\text { ? ? ? ? ? } \mathrm{NADH}+\mathbf{H}^{+}+\mathrm{A}
$$

+Structure of NAD

NAD ${ }^{+}$ NADH+H

$\mathrm{NADP}^{+} \longrightarrow \mathrm{NADPH}+\mathrm{H}^{+}$

reduction of NAD+

- Reactions requiring NAD+ are:
a- [oxidative decarboxylation of a keto acids as PDH] \longrightarrow Energy (ATP)
b- [C.A.C.] \longrightarrow Energy (ATP)
c- [beta oxidation of F.A.] \longrightarrow Energy (ATP)

3 3 me tho Treat (anticancer soak: enagone

- Reactions requiring co-enzyme NADP+ as:
? Glucose-6-phosphate dehydrogenase (NADP+) spentese Pheosphente parthuy
? Folate reductase (NADPH $+\mathrm{H}+$)
Convert the folic acid into intestinal niacin absorption prose: intracellular protein terrahy drofoflohe intestinal niacin absorption process: intracellular protein-tyrosine-kinase-mediated pathway regulates vitamin uptake.
\rightarrow to participate inneocletide synthesis
DNA replication, RNA transcription
Q HMG reductase enzyme
which is utilized inthe suthtusis
ab) No jj \uparrow requermenas
Deficiency
Causes of deficiency:
- in elderly on very restricted diet.
- malabsorption.
- in maize-dependant population, because t's not containing suffeciant
- in vil. B6 def. ting ${ }^{5} 18=088$ amount of tryptophan
- Hartnup disease (decreased tryptophan absorption)
- Malignant carcinoid syndrome (increased tryptophan

\qquad
Clinical use: Treatment of hyperlipidemia why? pee all of them $v+B 1+V i+B 2$
$+V i+B 3$
$p o r$

- Deficiencies found in southeast if subsisting on diet of corn ; niacin is bound by protein. Pelagra is very rare now
- Deficiency:
- Milder deficiencies of niacin cause:

3 Poor appetite, fatigue.
? Dermatitis, Diarrhea.

- Severe deficiencies lead to pellagra which is characterized by "the four Ds": dermatitis, diarrhea,
$\dot{\theta} 3$ dementia (lack of concentration) and death.
- Dermatitis is usually seen in skin areas exposed to sun light and is symmetric.
in the exposed areas

symmerical (byth foods)
- disorders and mental disturbances.

Pantothenic acid (B 5)

Absorption it's not absorbed a aine
-For the intestinal cells to absorb pantothenic vitamin, it must be converted into free pantothenic acid.

- Free Pantothenic acid and Biotin is absorbed into intestinal ells via a saturable sodium-dependent active transport system. [Sodium-dependent multivitamin transporter (SMVT)] some pantothenic acid may also be absorbed via passive diffusion. As intake increases 10 -fold, however, absorption rate decreases to 10%. to give chance for the absorbtion of

At high levels of intake, when this mechanism is saturated,

1. Chemical structure is [Pantoic \& β-Alanine]
2. Active pantothenic acid is [4-phosphopantotheine]
3. Active form enters in the structure of

COASH $=4$-phosphopantotheine + AMP co enzyme $\mathrm{A} \rightarrow$ Ititric acid ogle

- ACP; acyl carrier protein

$$
\text { e } A \rightarrow \text { Oxidative decarbandantion }
$$

4. Its active group is: [Thiol group]
5. Its function as is: [Carrier of acyl radicals]. coenzyme A used in energy metabolism

6-Sources are: [as B1]
7-Reactions requiring CoASH:
Thioethanolamine

Structure of Co-ASH a- oxidative decarboxylation of a keto acids \longrightarrow Energy. ${ }^{3}$ Acetate \longrightarrow Acetyl cos b- oxidation of Fatty acid neardtansmulter at the nerve index. $5!$ L glutamic acid $\rightarrow \alpha$-glutarin col. e- acetylating reactions as acetyl choline.
8-Reaction requiring ACP is :_ [Fatty acids synthesis]

y sic - Destruction: Easily destroyed by food processing.

- Functions: Part of coenzyme A used in energy metabolism.
- Deficiency: rare because it is very widespread in natural food.
- Nausea, vomiting. -Easy fatigability. -Dermatitis.
- Depression, neurological symptoms (disorders of the synthesis of acetylcholine). Numbness, muscle cramps, inability to walk.
- Burning foot syndrome (severe burning and excessive sweating).
painful feeling of hotness in feet
3 vitamins cancanse the sure syndrome in addition to the def in vil B5:-
(1) vitamin C
(3) Nit B12 (cobalamine).

23 (2) foliate (B9)

Pyridoxine (B 6)

Chemistry:

- It is a water soluble vitamin
- A pyridoxine derivative
- Consists of 3 closely related compounds equally effective as precursors of its coenzyme PLP (pyridoxal phosphate)
(0)-Pyridoxine (alcohol)
(22) - Pyridoxal (aldehyde)
(3)-Pyridoxamine (amine)

Pyridoxal

Pyridoxamine

Pyridoxine

- Pyridoxamine is mostly present in plants
- Pyridoxal \& pyridoxine is present in animal foods
- Pyridoxine can be converted pyridoxal \& pyridoxamine
- Pyridoxal phosphate (PLP) is the active form of Pyridoxine
- PLP is synthesized by pyridoxal kinase, utilizing ATP

Metabolism
Absorption: flt occurs in proximal jejunum by passive diffusion

- In the mucosal cells, all forms of pyridoxine are converted pyridoxal
- Transport: It transported in the circulation bound to albumin
- Storage: It is stored in the tissues as its coenzyme form, PLP
- Mainly stored in liver, brain, kidney \& muscle
- Excretion: 4 - pyridoxic acid excreted in urine

Biochemical functions

PLP is the coenzyme of B6 is found attached to ε-amino group of lysine in the enzyme

- PLP is associated with Amino acid metabolism
- PLP is involved in: trawferos uninio graw in: 1-Transamination 2- Decarboxylation

3- Deamination 4- Transsulfuration 5-Condensation

Wat
Transamination

- PLP is involved in transamination reaction converting amino acids to keto acids
- Keto acids enter the TCA cycle and get oxidized to generate energy
- During transamination, PLP interacts with amino acids to form Schiff base
- The amino group is handed over to PLP to form Pyridoxamine phosphate and ketoacid is liberated.

for diagnosis
alanine transaminase bypognersis of infective hepatitis glannineaminotransterase.

Decarboxylation

- α - Amino acids undergo decarboxylation to form respective amines
- The reaction is carried out by decarboxylases which require PLP

1- Serotonin produced from tryptophan is important in nerve impulse transmission. It regulates sleep, behavior, blood pressure.

Tryptophan $\longrightarrow 5$-HydroxyTryptophan $\longrightarrow \xrightarrow{\longrightarrow} \mathrm{CO} 2$
2- Histamine is vasodilator lowering blood pressure

- It stimulates gastric HCl secretion and is involved in inflammation and allergic reactions
3- Glutamate on decarboxylation gives GABA which inhibits transmission of nerve impulses

5-Hydroxytryptamine
Useretorine
Genitaray $J E$ allergl cenections Decarboxylase, PLP
Histamine

- PLP Plays an important role in metabolism of sulfur containing A.A.s
-Transsulfuration from homocysteine to serine occurs in the synthesis of cysteine
- PLP dependent enzyme cystathionine synthase

Deamination of hydroxyl group containing A.A.s requires PLP
PLP, dehydratase remomion water moleculte.

Serine
Pyruvate + NH3

- Synthesis of serine from glycine require PLP.
- Glycogen phosphorylase contains PLP for converting glycogen to glucose 1-phosphate
- PLP is needed for the absorption of amino acids from intestine
- B6 is useful to prevent urinary stone formation

RDA (Recommended Dietary allowance) of vitamin B 6

- Adult men - $2-2.2 \mathrm{mg} /$ day
- Adult women - $2.0 \mathrm{mg} /$ day
- Pregnancy and lactation $-2.5 \mathrm{mg} /$ day

Dietary sources:

- Animal sources: egg yolk, fish, milk, meat
- Vegetable sources: wheat, corn, cabbage, roots \& tubers

Deficiency

- Decreased dietary intake
- increased requirerment
- Alcoholism
- Impaired absorption smalaburorbtion -
- Antivitamins: chronic administration of drugs such as isoniazid and penicillamine
so toy mels- be supplementee wholvi- $B 6$.

Clinical features

- Neurological manifestations due to B6 deficiency, serotonin, epinephrine, norepinephrine and GABA are not produced properly
- The synthesis of niacin from tryptophan is impaired
- Xanthurenic acid, produced in high quantities is excreted in urine and can be used as reliable index of B6 deficiency
- Decreased Hb levels, associated with hypochromic microytic anemia seen in B6 deficiency
co ensyme in thefist raction of hume AIA

- Excess use of B6 ($2.5 \mathrm{~g} /$ day $)$ may lead to sensory neuropathy
- It is manifested by imbalance, numbness, muscle weakness and nerve damage

Biotin (B 7)

- It is formerly known as anti-egg white injury factor or vitamin H
- It is water soluble sulfur containing B-complex vitamin
-Biotin mainly participates in the carboxylation reactions

Chemistry

- It is a heterocyclic sulfur containing monocarboxylic acid
- Biotin is imidazole derivative formed by fusion of imidazole and thiophene rings with a valeric acid side chain
- Biotin covalently bound to ε - amino group of lysine to form biocytin

Coenzyme form

- Biocytin is the coenzyme form of Biotin
- Biotin is a prosthetic group of carboxylase

Biochemical functions

- Biotin is required for carboxylation reactions
- Biotin is required for the enzymes
(1) Source of $\mathrm{CO}_{2} \rightarrow \mathrm{HCOS}$ (bicarbonate)
- Pyruvate carboxylase
- Acetyl CoA carboxylase
- Propionyl carboxylase
- β - Methyl crotonyl CoA carboxylase
- Pyruvate carboxylase catalyzes conversion of pyruvate to oxaloacetate $\mathrm{CO} 2, \mathrm{ATP}$, pyruvate carboxylase

Pyruvate		Oxaloacetate
	ADP+Pi Biotin, $\mathrm{Mg}++/ \mathrm{Mn}$	

-- Acetyl CoA carboxylase catalyzes the formation of malonyl CoA from acetyl CoA, the reaction provides acetate molecule for fatty acid synthesis

2 curbona atums $\mathrm{CH}_{3} \mathrm{COOH} 1$
CO2, ATP, Acetyl CoA carboxylase
Acetyl CoA

$$
\text { ADP+Pi Biotin, } \mathrm{Mg}++/ \mathrm{Mn}
$$

- Propionyl CoA carboxylase catalyzes the formation of D - Methyl malonyl CoA from propionyl CoA(from odd chain FA \& methionine) - It required for entry of Propionyl CoA to TCA cycle via succinyl CoA CO2, ATP, propionyl CoA carboxylase
Propionyl CoA $\longrightarrow \mathrm{D}$ - Methyl malonyl CoA $\mathrm{ADP}+\mathrm{Pi}$ Biotin, $\mathrm{Mg}++/ \mathrm{Mn}$
β - Methyl crotonyl CoA carboxylase catalyzes the formation of β Methylglutaconyl CoA from β - Methyl crotonyl CoA
It is essential for leucine catabolism

$$
\beta \text { - Methyl crotonyl CoA } \xrightarrow[\text { ADP }+\mathrm{Pi} \text { Biotin, } \mathrm{Mg}++/ \mathrm{Mn}]{\stackrel{\mathrm{CO} 2, \text { Methyl crotonyl CoA carboxylase }}{\longrightarrow} \beta-\text { Methylglutaconyl CoA }}
$$

- Not all carboxylation reactions in the biological system are biotin dependent, few carboxylation reactions which do not require biotin
- Formation of carbamoyl phosphate in area cycle wisu wos
- Incorporation of CO 2 in purine synthesis

Dendvo synthesis of purine.

Dietary sources

- Rich sources are eggs, liver, kidney, \& yeast, pulses, nuts, vegetables
- Poor sources are cereals \& dairy products

RDA

- Adults - $200-300 \mathrm{mg} /$ day

Deficiency

- Biotin deficiency is generally not seen in man because of

2- Synthesis of vitamin by the bacterial flora in the gut \lrcorner Cins cel

$$
\text { 「 }{ }^{\text {ºn }}
$$

Clinical features

- Severe dermatitis, weakness, \& nausea
- In animals muscle weakness, dermatitis \& loss of hair around the eye
- Avidin-biotin system is commonly utilized for detection of pathogenesis in ELISA teSt), used in diagnosiscof different diseases (ute covrd-19)
- DNA is generally labelled by radioactive nucleotides
- Recently, biotin labelling of DNA is becoming more popular
- Biotin is added to nucleotides, which will be incorporated into the newly synthesized DNA
- The fixed biotin can be identified by reaction with Avidin
- Intake of 20 raw eggs/day will produce Biotin deficiency in humans

Prolonged use of antibacterial drugs such as sulfonamides

Biotin antagonists

- Avidin (Raw egg white injury factor)
- Raw egg white injury factor is a heat labile protein known as avidin and is present in raw egg white
- Avidin binds to biotin \& makes its unavailable for absorption
- Avidin is inactivated by boiling the eggs \& biotin is readily absorbed when boiled eggs are used in the diet
- One molecule of avidin can combine with four molecules of biotin
- Egg white contains Avidin \& egg yolk contains biotin
- The affinity of Avidin to biotin is greater than most of the usual antigen-antibody reactions

