Bodly flurids

and its compartments

BY
Dr. Nour A. Mohammed

-Water is the most abundant constituent in our bodies.

- It forms 60\% of total body weight of normal adult male weighing 70 Kg .

Water Content in
 the Hurnan Body

Sex

Fat cells contain less water and thus females (being fattier than males) contain slightly less water.

Although the newly born have more percentage of their body as water than adults, yet most of their body water is intracellular and the percentage of their ECF is less than adults thus they are more liable to dehydration in cases of vomiting and diarrhea than adults.

Composition

\& distriburtion

of body flurids

1- Composition of body fluids

Organic:

-Glucose.
-Amino acids.
-Enzymes.
-Hormones.

Inorganic
 = ions

Na+, K+, Ca++..

2- Distribution of body fluids

Total Body fluid

Intracellular
Fluid (40\%)

Extracellular
Fluid (20\%)

Intravascular Fluid (Plasma)

Interstitial Fluid
Transcellular Fluid

Total body water (TBW)

60 \%

42 L

Extracellular fluid (ECF)
 20 \%
 14 L

Intracellular fluid (ICF) 40\% 28 L

Interstitial fluid
3/4 of ECF
10.5 L

Plasma 1/4 of ECF
3.5 L

Capillary wall

What is the importance of body fluid?

*Water is the origin of life, and there is no form of life can be maintained without water. Moreover, all the chemical \& biological reactions in the body must be performed in an aqueous media.

* Some other vital functions of water are:

1. It favors ionization of dissolved salts.
2. It regulates body temperature via both heat loss and heat gain balance.
3. It gives the blood its fluidity to reach all cells and to maintain BP.

Regulates body temperature

Protects body organs and tissues

Helps prevent constipation

Helps dissolve minerals and other nutrients to make them accessible to the body

Body water balance

* It is the balance between water intake and water loss.
* In comfortable zone of body temperature (22。C) it was estimated that water intake by normal adult 70 kg male $=2500 \mathrm{ml} /$ day which distributed as follow: $\mathbf{1 5 0 0} \mathbf{~ m l ~ i s ~ t a k e n ~ a s ~ p u r e ~ w a t e r ~ a n d ~}$ beverages (tea for example), $\mathbf{8 0 0} \mathbf{~ m l}$ from food as fruits and vegetables and $\mathbf{2 0 0} \mathbf{m l}$ from metabolic processes.
* The water loss normally $=\mathbf{2 5 0 0} \mathbf{m l} / \mathbf{d a y}$ which distributed as follow:
$\mathbf{1 5 0 0} \mathbf{~ m l ~ e x c r e t e d ~ a s ~ u r i n e , ~} \mathbf{9 0 0} \mathbf{m l}$ evaporated from the skin and lungs and $\mathbf{1 0 0} \mathbf{~ m l}$ excreted in feces.
* The amount of water lost by sweating is highly variable, depending on physical activity and environmental temperature.
- The volume of sweat normally is about $\mathbf{1 0 0} \mathbf{~ m l} /$ day.

Obligatory water loss: $=\mathbf{1} \mathbf{L} / \mathbf{d a y}$. So, minimal intake of $1 \mathrm{~L} /$ day is essential for life as there is No reserve of water in the body.

Regulation of Water Intake (Thirst Sensation)

The stimuli of thirst sensations are:

1. Increased plasma osmolarity either due to pure water loss or excessive intake of salts.
2. Loss of large amount of ECF fluid (following vomiting or diarrhea).
3. Hemorrhage and shock.
4. Dryness of mouth (from inhibition of salivary secretion).
5. Increased angiotensin II secretion.

Thirst center located in the hypothalamus.

Water output each day
Water iuput eacl day

Water contained in food	0.8 litre
Water produced by the cells	0.2 litre
Water you drulk	1.5 litres
TOTAL	2.5 litres

* A serious problem that faces us that there is no reserve of water in our bodies despite the large amount present.
* A reduction of 5% of water content makes the person very thirsty, a loss of 10% makes him very ill while a reduction of 20% will kill him.
* without water intake there is obligatory water loss = 1 liter/day (in urine, insensible perspiration and in expired air) thus death occurs even in cool climate if water is not totally taken after 46 days.
* A minimal intake of liter/day is essential for life.
* Antidiuretic hormone "ADH" controls water loss by the kidney.

How can we measure body fluid volume??

DILUTION PRINCIPLE

- Based on using a marker whose concentration can be measured.
Inject \mathbf{x} gm of marker into compartment measure concentration at equilibrium (y gm/L)
Since concentration = mass/volume Volume = mass $/$ concentration
- $V=x / \mathbf{y} L$

Total body water volume

- It is measured by the application of the Indicator dilution principle or dye dilution principle.

$$
\mathrm{CA}_{\mathrm{A}} \times \mathbf{V}_{\mathrm{A}}=\mathrm{CB} \times \mathrm{V}_{\mathrm{B}}
$$

Volume $B=\frac{\text { Volume } \mathrm{A} \times \text { Concentration } \mathrm{A}}{\text { Concentration } \mathrm{B}}$

Determination of compartmental volume

1. Place indicator A in the compartment B .
2. Allow it to disperse evenly though out the compartment's fluid
3. Analyze the extent to which the substance is diluted

Indicators used for measuring plasma volume, ECF volume and total body $\mathrm{H}_{2} \mathrm{O}$

Compartment	Criterion	Indicators
1. Plasma	Substance should not cross capillaries	1. 2. Evans blue dye;
2. radioiodinated fibrinogen;		
3. radioiodinated albumin		

CRITERIA FOR A SUITABEL DYE. BODY FLUID MARKER

1. Must mix evenly throughout the compartment
2. Non toxic, no physiological activity
3. Even mixing
4. Must have no effect of its own on the distribution of H 2 O or other substances in the body
5. Either it must be unchanged during the experiment or if it changes, the amount changed must be known.
6. The material should be relatively easy to measure.

Compartments with
 no Compartment-Specific Substance

1. Determine by subtraction:
2. How would you measure ICF volume?
3. Cannot be measured; it is calculated (estimated)..
4. ICF volume $=$ Total body $\mathrm{H}_{2} \mathrm{O}-\mathrm{ECF}$ volume
5. Interstitial volume 1. Can not be measured directly

Activity time!

- In 1 mL of solution a certain mass of dye is dispersed resulted in concentration equal ($10 \mathrm{mg} / \mathrm{mL}$) then dye in chamber B and final concentration in the chamber is $0.01 \mathrm{mg} / \mathrm{mL}$.
- What is the volume in chamber B ?

