

Muscle Tissues

Muscle – Slide menu

- Slide 1 Notes Drawing Muscle types
- 🛃 Slide 2 Notes Skeletal muscle
- Slide 3 Notes Drawing Skeletal muscle
- <mark>d</mark> Slide 4 Notes Drawing Actin 1
- Slide 5 Notes Drawing Actin 2
- Slide 6 Notes Drawing Myosin
- Slide 7 Drawings Striated muscle 1
- Slide 8 Drawings Striated muscle 2
- Slide 9 Drawings Muscle contraction + Animation
- **Gilide 10-** Animation Contraction 1
- **G** Slide 11- Animation Contraction 2
- **d** Slide 12- Notes Drawing Sarcoplasmic reticulum
- d Slide 13- Drawing Sarcoplasmic reticulum
- Slide 14- Notes Drawing Nerves
- *d* Slide 15- Notes Drawing Spindle

Muscle – Slide menu

- **d** Slide 16 Slides Motor end plates
- <u> Slide</u> 17 Slide Skeletal muscle
- Slide 18 Slide Skeletal muscle X section
- **d** Slide 19 Notes Drawing Muscle coverings
- **d** Slide 20 Notes Drawing Cardiac muscle
- **d** Slide 21–Notes Drawing Em cardiac muscle
- <u>d</u> Slide 22– Drawing Sarcoplasmic reticulum cardiac muscle
- Slide 23 Drawings Compare Skeletal + Cardiac muscle
- **d** Slide 24 Notes Drawing Cardiac muscle
- **d** Slide 25- Notes Drawing Intercalated disc
- d Slide 26- Slide Cardiac Muscle 1
- 🧖 Slide 27- Slide Cardiac Muscle 2
- **d** Slide 28- Notes Contraction
- *d* Slide 29- Notes Drawing Smooth muscle
- **d** Slide 30- Notes EM micrograph Dense Bodies

Muscle – Slide menu

Slide 31 – Notes – Smooth Muscle
Slide 32 – Slide – Smooth Muscle - Low magnification
Slide 33 – Slide – Smooth Muscle - Medium magnification
Slide 34 – Slide – Smooth Muscle - High magnification

MUSCLE

Specialized for **contraction** allow movement

The cells are called **fibres** because of their length (myo= muscle)

sarcoplasm = protoplasm

sarcolemma = cell membrane

sarcoplasmic reticulum = smooth surfaced EPR

sarcomere = functional unit

sarcosomes = mitochondria

Types:

Skeletal (voluntary)

striated

🔺 cardiac (involuntary)

smooth (involuntary)

Slide 1

Quit

Muscle cells can be placed into three categories:

a. Smooth Involuntary Muscle

i. found in hollow visceral organs such as the gut, uterus and blood vessels

ii. associated with various exocrine glands.

b. Striated Involuntary Muscle - found in the heart (cardiac muscle)

c. Striated Voluntary Muscle - makes up the skeletal muscles of the body

Skeletal Muscle

-known as **striated** or **voluntary muscle**, comprises some **40-50%** of the body mass in adults

long fibres, the average length of skeletal muscle cells in humans is about
 3 cm (sartorius muscle up to 30 cm, stapedius muscle only about 1 mm).
 Their diameters vary from 10 to 100µm.

Slide 2

Main menu
Slide menu

Quit

-According to the **myoglobin** content there are:

Red fibres (Type I fibres)

-Red muscle fibres are comparatively thin. Contain lots of myoglobin

- -Many mitochondria
- -Slow twitching (contract slower) tire slower

-Found in limbs, long muscles of the back (long, slow contraction for erect posture). Red muscles are needed when **sustained** production of **force** is necessary

White fibres (Type II fibres)

-are thicker, Less myoglobin

- -Less mitochondria
- -Fast twitching, contraction is fast tire quickly
- -Found in **extraocular** muscles, digits (for rapid and precise movement)
- -Fast twitch fibers can be further categorized into Type IIa and Type IIb fibers.

Most muscles have all three in varying ratios

•During embryonic development **mesodermal cells** differentiate into uninuclear **myoblasts**, which elongate and fuse together to form **myotubes**, which further develop into the mature muscle fibers or **myofibers**. These myofibers are the basic units of skeletal muscle

•A further cell-type, known as **satellite cells**, may be found adjacent to the sarcolemma. These are elongated, poorly-differentiated cells that are very difficult to discern in typical preparations, but become active during **repair** and **regeneration** processes after muscle injury.

Structure of skeletal muscle: Light Microscopy

- Many nuclei 35/mm
- Nuclei are oval situated peripheral
- Dark and light bands lie across the fiber
- No branching

(Junqueira et al, 1986).

This is skeletal muscle. The $\leftarrow \leftarrow$ show the peripheral nuclei of a skeletal muscle fiber. Notice the cross striations and that the fibers don't have any connections.

This is a cross section through skeletal muscle. The $\uparrow \downarrow$ indicate the peripheral nuclei of skeletal muscle fibers.

This is a drawing showing how a number of myofibrils make up a muscle fiber and how a number of fibers make up a **muscle fasciculus** (bundle). A number of these bundles make up a muscle. Notice the A,I and H bands and Z disc (line) across the myofibril.

Quit

This drawing shows how the myofilaments (actin + myosin) make up a myofibril. It also shows the different bands across the fibril. Drawings 1,2,3,4 show cross sections through different parts of the fibril.

The average length of a **sarcomere** (functional unit) is about 2.5 μ m (contracted ~1.5 μ m, stretched ~3 μ m).

I-band - actin filaments,

A-band - myosin filaments which may overlap with actin filaments,

H-band - zone of myosin filaments only (no overlap with actin filaments) within the A-band,

Z-line - zone of apposition of actin filaments belonging to two neighboring sarcomeres (mediated by a protein called **alpha-actinin**),

M-line - band of connections between myosin filaments (mediated by proteins, e.g. myomesin, M-protein).

© 2012 Pearson Education, Inc.

Electron Microscopy

Two types of myofilaments Actin

- The actin molecule has 3 components:
 - actin monomers
 - tropomyosin 7 actin molecules long
 - troponin

Slide 4

Main menu

Slide menu

Electron Microscopy

Two types of myofilaments **Actin**

- o actin monomers form 2 threads that spiral
- tropomyosin lie in the groove of the spiral
- o troponin attach every 40 nm
- one end attach to the Z line
- \circ other end goes to the middle of the sarcomere
- \circ Z line consists of α actinin

Slide 5

Myosin:

- 15 nm φ
- 1,6 μm long
- The molecule has a head and a tail
- tails are parallel
- heads project in a spiral
- in the middle is a thickening

Quit

Contraction:

A - band stays the sameI - band, H - bands become **narrower**Myosin heads ratchet on the actin molecule

Notice how the I band changes during contraction. The next 2 slides will show how the I band changes during contraction. To see it go forwards and backwards.

Slide 9

Quit

Slide 10

Main menu

Slide menu

Sarcolemma:

- 9 nm thick
- invaginate to form **T-tubule**
- myofibrils attach to the sarcolemma

Sarcoplasmic Reticulum:

- specialized smooth EPR, regulates muscle contraction
- Consists of T-tubules, terminal cisternae and sarcotubules
- It is speculated that there are gap junctions between the T-tubule and terminal cisterna
- An impulse is carried into the fiber by the T-tubule from where it goes to the rest of the sarcoplasmic reticulum

This is the motor end plate. Slide 1 shows a low magnification. The \checkmark indicate 2 motor end plates. The \rightarrow in slide 2 shows where the myelin sheath ends. Slide 3 shows a single motor end plate.

Nerves: sensory

 Specialized fusiform sensory organ called spindles (function as stretch receptors) form sensory receptors in muscles telling the brain how far the muscle has stretched

> A number of small specialised intrafusal muscle fibres (nuclear bag fibres and nuclear chain fibres) are surrounded by a capsule of connective

tissue.

Stretch receptor

Slide 15

Main menu

Slide menu

Connective tissue coverings of the muscle

- Endomysium around fibres, perimysium around bundles (fascicle) and epimysium around the whole muscle

Slide 19

- blood vessels and nerves lie in these connective tissue coverings.
- The CT goes over into a tendon or aponeurosis which attaches to the periosteum

Cardiac Muscle

- Cardiac muscle, the myocardium, consists of muscle cells, cardiomyocytes
- Fibres anastomose through cross bridges
- Fibres are short and branched, connected end to end at intercalated discs
- also striated
- contract automatically
- Cardiac muscle does not contain cells equivalent to the satellite cells of skeletal muscle. Therefore cardiac muscle cannot regenerate

Light microscopic Structure:

- Short fibres connected at intercalated discs
- 85 100 μm long
- 15 μm φ
- same bands as in skeletal muscle
- 1 or 2 nuclei oval and central
- in perinuclear area is a sarcoplasmic reticulum
- intercalated discs lie at the Z line

Cardiac muscle

Nucleus

Slide 20

Main menu

Slide menu

Ú

This is cardiac muscle. Notice the centrally placed nuclei and the cross bridges linking fibers. Between lie endomysium and capillaries. The \leftarrow indicate the intercalated discs.

(Ross and Romrell, 1989).

This is cardiac muscle. The \leftarrow indicate a central oval nucleus. The \leftarrow indicate a cross bridge. The \leftarrow indicate cross striations.

Electron microscopic structure:

- Between myofibrils lie the mitochondria
- 2.5 µm long mitochondria
- dense cristae
- and are as long as the sarcomere
- fibres have more glycogen than skeletal muscle fibres
- myofilaments, actin and myosin are the same as in skeletal muscle
- the sarcoplasmic reticulum differs in that there is no **terminal cisterna**. The sarcotubules end in **little feet** that sit on the **T-tubule**

Slide 21

Main menu

Slide menu

Quit

(Ross and Romrell, 1989).

Identify: T tubule, Sarcotubules How the sarcotubules end on the T tubule.

The level at which the T tubule lies

Slide 22

Main menu

Slide menu

Quit

Sarcoplasmic reticulum of skeletal and cardiac muscle. Notice that the T tubules lie at different levels in the two muscle types. (junction of A and I bands for skeletal muscle - Z line for cardiac). Terminal cisterna absent from cardiac muscle

Intercalated Disc:

- on Z lines
- fibres interdigitate

Main menu Slide menu Mitochondria LP Sarcoplasmic reticulum Intercalated disk: site of gap junction Intercalated disk; site of adhesive junction

Notice the tongue and groove folds \rightarrow for stronger attachment between cardiac muscle fibers in the intercalated disc.

- (c) 1-- interdigitating folds
 - **2—mechanical junctions** two types; fascia adherens and desmosomes

19-70

3-electrical (gap) junctions--

Transverse Part:

- zonula (fasciae) adherents (A) *hold cardiac muscle cells *anchor thin filaments
- desmosomes (macula adherentes) (B)
 *rivets to prevent the cells from pulling apart

Lateral Part:

- Gap junctions (nexus) (C)
- * for **impulse transfer** (electrical communication between cardiac muscle cells)
- desmosomes (macula adherentes) (B)

Copyright ©2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Mechanism of Contraction:

- slide ratchet like in skeletal muscle
- certain fibres are modified for conduction, specialised cardiac muscle cells organized into nodes to transmit the impulse to various parts called cardiac conducting cells (*Purkinje cells*)
- Impulses spread from cell to cell through gap junctions

Slide menu

Smooth Muscle

Light microscopic Structure:

- cells **variable size spindle shaped** -The largest smooth muscle cells occur in the uterus during pregnancy (12x600 μ m). The smallest are found around small arterioles (1x10 μ m)
- nucleus lies in the widest widest part of the fiber
- when the fiber contract the nucleus become folded
- 30 200 μm long
- between fibres lie endomysium

Electron microscopic structure:

- Mitochondria, ribosomes, golgi, rough EPR
- myofilaments are present but no sarcomeres and no Z lines
- thin filaments actin and tropomyosin (7nmØ)
- thick filaments myosin (17nmØ)
- intermediate filaments (10 nmØ)
- actin and myosin **overlap** more than in skeletal muscle and can therefore contract more
- A rudimentary sacroplasmic reticulum is present in the form of invaginations on the surface called caveolae
- So there are no T-tubules
- Cells communicate through gap junctions.

INUCIEUS

Dense bodies

- Filaments are attached to **dense bodies** (**plaque**) which take the place of the Z line in skeletal muscle
- There are two types of dense bodies cytoplasmic and membrane
- contains a percentage actinin (like the Z line)
- dense bodies transmit contractile force to adjacent fibres

The \downarrow indicate a dense body on the membrane.

The \checkmark indicate dense bodies in the cytoplasm.

The drawings show how the filaments attach to the dense bodies and how the filaments pull the dense bodies

closer during contraction.

Relaxed

Actin-myosin filaments

Contracted

Main menu

Slide menu

Quit

Arrangement:

- Fibres can be single or in groups
- normally arranged in sheaths
- In the GIT are 2 or 3 layers

Nerve supply:

2 types:

- Where it is arranged in layers a few fibres are innervated together
- impulse spread through the gap junctions between fibres (slow contraction)
- In the iris and the vas deferens each fiber is **individually** supplied (quick contraction)

Slide 31

Main menu

Slide menu

Quit

This is low magnification of smooth muscle.

This is a higher magnification of smooth muscle. Notice the elongated (sigar shaped) \uparrow nuclei.

This is smooth muscle – high magnification. The indicate the spindle shape of the smooth muscle fiber. Notice the elongated nuclei.

