

Considered modified connective tissue because it contains:

- ➤ cells
- a liquid ground substance (called plasma)
- dissolved protein fibers.

Adult has ~ 5.5 -6 L (7-8% of body volume)

Circulate in CVS (closed circulation)

Blood formation = hematopoiesis (blood formation process) Consists of liquid and cellular components by a machine called a centrifuge.

In centrifuge we took the sample from peripheral blood

(NaCl, Bicarbonates **HCO3**-, phosphates & calcium) **The Blood Film= Smear**

Preparation of blood for laboratory study

Blood elements =blood cell

- Why do we do a blood film ?
- 1.To study blood elements.
- 2.To make differential leucocytic count.

Steps :

- Put a small drop of blood peripheral blood
- Spread into a thin film
- Stain with Leishman or Giemsa stain

(methylene blue +eosin) the H&E stain with hematoxylin + eosin

Blood film

• Why do we do a blood film ?

1.To study blood elements.

2.To make differential leucocytic count.

Steps :

- Put a small drop of blood
- Spread into a thin film
- Stain with Leishman or Giemsa stain (methylene blue +eosin) as we take the toludene blue for the mast cell
- Stains of blood film
- Giemsa's / Leishman's(انفس الصبغه بس الاختلاف في نسب المواد المكونه لها)

• = methylene blue + eosin

- **basophilic (violet)**
- • eosinophilic (pink)
- ► azurophilic (red purple)

Complete blood count (CBC)

I-Total count :

It is the total number of blood elements (RBCs, WBCs,or Platelets) per cubic millimeter

Cubic millimeter=micro liter

Measured by Hemocytometer Or automatic counter

II-Differential leucocytic count

- the percentage of each type of leucocytes to the total count of white blood cell
 - Done by blood film. Or automatic counter

Three type of blood cells : white blood cell, red blood cell , platelets

Blood cell count=CBC

- Manual method= Conventional =hemocytometer= counting chamber.
- Electronic method = automated hematology analyzer.
- WBC have total and differential count

Red Blood corpuscles =Erythro/cytes

Corpuscles: bag filled with hemoglobin has no nucleus and no organelle

- Blood cell
 - 1. Total or Differential count all the cell has total except WBC has differential and total
 - 2. Shape & size
 - 3. Structure (nucleus + granules)
 - 4. Function
 - 5. Life span
 - 6. Abnormalities

" Life span of the cell depends on its function

...All cells have at least one nucleus but there are some cells [Binucleated,,, liver] and multi nucleated,,, muscle] except RBC [don't have nucleus] <u>Normal RBCs total count:</u>

- In <u>males</u> **†** 5- 5.5 millions mm[°] blood
- in <u>females</u> # 4.5-5 millions / mm² blood

LM of RBCs:

Shape: - Biconcave discs. Rounded in origin (larger surface)

Mature RBCs are membrane- bound corpuscle. Difference between mature and immature Immature has organelles and nucleus Mature has no organelles and no nucleus except few mitochondria

✤ <u>Size:</u>

- -Diameter 7.5 μm
- Thickness 1 μm)
- In any blood film you must see RBC

HB concentrated in periphery

Nucleus: Anucleate.

<u>Cytoplasm</u> 33% of the corpuscular volume is Hemoglobin = heme
 "Fe"+ Globin 'protein'
 HB النواه بتطلع عشان توفر مساحه لدخول

There is no measruing unit in RBC except micron

Red Blood

EM picture of RBCs:

 No nucleus, No typical organelles. Only few mitochondria

subplasmalemmal cytoskeleton (actin, spectrin & ankyrin) responsible for the flexibility of RBCs. To pass through capillary (in capillary RBC 3 micron)

Glycocalyx (cell coat) responsible for the ABO/ Rh blood group.

Function of RBCs Carry O2& CO2 (hemoglobin)

*For increasing surface ares the cell extrusion the nucleus and organelles,

*The carbonic anhydrase doing dissociation of co2 and o2

2- life span:

- 100-120 days
- Then removed by <u>Macrophages (doing phagocytosis)</u> of spleen and liver sinusoids. Numerous macrophages in liver and spleen
- When RBC removed the Heme storage to make HB

Adaptation to function

- **1- A** surface area. Biconcave shape
- 2- ▲ amount of HB
 - (no nucleus/ organelles)
- 3- ▲ ▲ HB at the periphery carry O2 , CO2 selective permeability
- 5- carbonic anhydrase dissociation for gases
- 6- ▲ flexibility to squeeze without damage

Subplasmalemmal cytoskeleton

7- Glycocalyx

4-

6 | Page

Abnormalities of RBCs

- Abnormalities of RBCs in number
- Anaemia: decrease in the total number of RBCs.
- Polycythaemia: increase in the total number of RBCs.

<u>Causes:</u> (decreased oxygen tension)

Physiological: newborns ,high altitude

Pathological: chronic lung and heart diseases.

- Abnormalities of RBCs in size normal 7.5 Mm
- Microcytosis: diameter of RBCs is less than 6μm. (Microcytic anaemia)
- Macrocytosis: diameter of RBCs is more than 9μm. (Macrocytic anaemia)
- Anisocytosis?? Variable size

Anisocytosis : Medical term for having red blood cells that are unequal in size

Abnormalities of RBCs in shape

1- Rouleaux formation In slow circulation

Rouleax are stacks or aggregation of red blood cells (slow circulation "in varicose veins condition)

- 2- Poikilocytosis ► Variable in shape
- 3- In hypertonic solution
 ▶ echinocytes(crenation) shrinking
- 4- In hypotonic solution **b** Ghosts

In hypotonic solution the cell been swelling and

Sickle Cell Anemia (abnormal Hemoglobin)

Reticulocytes immature RBCs Reticulocytes represent 1% of all RBCs in normal blood film.

• Nucleated

differ than mature RBCs

- > slightly larger (8μ m).
- > Cytoplasm contains remnants of ribosomes.
- On staining with cresyl blue form a reticulate pattern.

Clinical significance:

An increase in this percentage indicates an

- accelerated rate of erythropoiesis.
- compensate for anemia or hemorrhage.

BLOOD PLATELETS

Origin: from(fragmentation not rapture of) megakaryocyte in the bone marrow.

<u>Normal Platelet(total) Count</u> 250,000-350,000/ mm²

Structure (L. M) :

- Non-nucleated bodies,
- 2-4microns,central granular portion (granulomere) &peripheral clear zone (hyalomere)
- cell fragment of megakaryocyte
- Thrombocytes
- Thromboplastids

LM picture

Shape: Anucleate, biconvex discs. Be carful not biconcave

<u>Diameter</u> :2-3 μm.

- Granulomere, granular central region
- Hyalomere at the periphery, there is a pale basophilic zone

Ç

Biconvex

EM:

<u>Shape:</u>

- Irregular.
- Pseudopodia. To move

Platelet membrane:

▲ glycoprotein coat for: to form thrombose

- Adhesion
- Aggregation
- Hyalomere & granulomere
- Platelet granulomere few mitochondria & ribosomes.
- scattered glycogen particles.
- ➤ 3 types of granules:
- Alpha (α)granules:
- Large.
- Abundant.most numerous
- PD-GF, coagulation factors.
- Delta granules:
- Medium (size, no.)
- ATP, ADP, serotonin.
 - > Lambda(λ) granules: hydrolytic enzymes.

Platelet hyalomere

- Electron-lucent.
- Lacks organelles.
- It contains:
- circumferential bundle of 10-15 microtubules
- Actin & myosin
 motility + clot retraction
- Canalicular system + tubular system.
- Alpha granules ,,,, secretion

Life span : two week to month

PLATELET FUNCTION

At sites of injury of BVs:

- **Platelet adhesion**
- Platelet aggregation
- Thrombus formation
- Clot retraction get smaller
- Clot removal
- Functions of platelets
- Platelet aggregation- \rightarrow white thrombus
- Local blood coagulation-→ red thrombus
- Serotonin \rightarrow Vaso-constristriction
- Clot retraction \rightarrow by microfilaments
 - Clot removal → by proteolytic enzymes

PLATELET ABNORMALITY

Thrombocytopenia (purpura)

Thrombocytopenia occurs when your blood platelet count is slow

♦ Thrombocythemia ▲ ▲

Thrombasthenia disease in which your bone marrow makes too many platelets

One of symptoms of there's a lack or decreased in the number platelet cells :

1- purpura

2- anything touches the skin causes the converting

	RBCs Red blood corpuscle Erythrocytes – Greek: "Red	Platelets Thrombocytes Thromboplastides
Number	<u>males</u> is 5 - 5.5 millions / mm ³ <u>females</u> it is 4.5-5 millions / mm ³ blood.	250,000-350,000/mm ³
Size	7. 5-8. 5 um Macrocytes > 9 μm, Microcytes < 6 μm Anisocytosis = variation in si	3μm 2-5 μm diameter
Shape	biconcave disc	Biconvex
Structure	no nuclei& other organelles Bag of Haemoglobin	Fragments of megakaryocyte Non- nucleated
Life span	100-120 days	Life span 10 days in blood
Function	Carry O2 & Co2	 the process of thrombus formation (blood clotting) in response to any vascular endothelial injury to prevent excessive blood loss. clot retraction and removal of the blood clot after healing of the vessel wall to reestablish the flow of the blood.
Abnormality	Polycythaemia: i.e. increase in the total number of R.B.Cs. Anaemia: i.e. decrease in the total number of R.B.Cs. Sickle Cell Anemia	INCREASE Thrombosis Decrease Bleeding

2-

يقول الشافعيُّ رحمةُ الله تعالى : "لَيْسَ العِلْمُ مَا حُفِظَ، إنَّما العِلْمُ مَا نَفَعَ" فكن صبورًا على نفسك و تجرّع العلم رويدًا رويدًا، و ابذل من جهدك ما استطعت. حتى وإن كان طريق الحُلْم صعبًا .. لا تستسلم، لا تقف، لا تيأس، فالذي خلق الطريق الصعب، خلق فيك القوة على اجتيازه.