<u>Pharmacology of Parathyroid</u> <u>Gland, Vitamin D & Calcium</u>

Dr. Yousef Al-saraireh Associate professor in Pharmacology Faculty of Medicine, Mutah University

Content

- Calcium metabolism; Ca homeostasisParathyroid glands
- Vitamin D
- Calcium and bone related-diseases

Calcium metabolism or calcium homeostasis

- Is the mechanism by which body maintains adequate levels of Ca
- Disturbance of this mechanism leads to:
 - Hypercalcemia
 - Hypocalcemia

Importance of Ca in body

- One of the most important minerals for general cellular function
- Ca controls membrane excitation: there is influx of Ca through specific Ca channels during excitatory process in nerve & muscle
- It is necessary for muscle contraction
- Ca is a major constituent of bone & teeth

Calcium Sources

CALCIUM

minerals

Food sources of calcium include dairy products, green leafy vegetables, and salmon, and sardines

TADAM.

Calcium Distribution in the Body

- Average adult body contains **1000g** of Ca
- Over 99% of Ca is stored in skeleton
- The remaining 1% in extracellular fluid & cellular cytoplasm
- The total Ca in plasma is about 9-10 mg/dL

Regulators of Ca homeostasis

- **1. Principal regulators:**
 - Parathyroid hormone (PTH), Vitamin D
- **2. Second regulators:** calcitonin, qlucocorticoids & sex steroids (estrogens)
- 3 Other ions such as sodium fluoride
- 3. Other ions such as sodium, fluoride

Is a single chain peptide hormone, composed of 84 amino acids

It is produced in parathyroid glands

Thyroid and Parathyroid Glands

- When plasma Ca levels are low, PTH secretion increases:
 - releases of Ca from bones
 - increases Ca reabsorption from kidney
 - stimulates Ca absorption from small intestine
- If plasma Ca is high, PTH secretion is inhibited & Ca is deposited in bones

1. Effects on bone:

- PTH is involved in **remodeling of bone** (bone resorption & formation)
- Bone resorption is process by which osteoclasts (responsible for bone resorption), breakdown bone & releases minerals
- PTH increases activity & number of osteoclasts, which results in increased Ca in plasma

2. Effects on the kidney:

- PTH promotes active reabsorption of Ca & magnesium by ascending loop of Henle
- Increases phosphate excretion
- Stimulates synthesis of 1,25dihydroxyvitamin D (1,25(OH)₂D)

 Is a prohormone that serves as a precursor to a number of biologically active metabolites

It is produced in skin, from conversion of 7dehydrocholesterol to previtamin D3 by action of sunlight, and then is converted to vitamin D3 (cholecalciferol)

Many of dairy products in diet are fortified with ergocalciferol, a synthetic vitamin D2 that has activity equal to vitamin D3

- Vitamins D2 and D3 are made more active by two hydroxylation reactions:
- **1** α -hydroxylation in kidney
- 25-hydroxylation in liver
 - to form 1α-25-dihydroxycholecalciferol (calcitriol) (the most active natural form of vitamin D)

Alfacalcidol (one-alpha) requires only hepatic hydroxylation to become highly active calcitriol,

 therefore, it is effective in renal failure since defective renal hydroxylation stage is bypassed

Biological actions of vitamin D:

- Promotes absorption of Ca & Phosphate from gut
- Promotes renal tubular reabsorption of Ca and P

Indications:

- Prevention & cure of rickets & osteomalacia
 - Psoriasis
- **Calcitriol** is licensed for management of postmenopausal osteoporosis

- Doses and preparations:
 - Simple vit D deficiency can be prevented by taking orally 10 micrograms of ergocalciferol daily
- Alfacalcidol & calcitriol should be prescribed if patients with severe renal impairment require vitamin D therapy

Calcitonin

- A hormone secreted by parafollicular cells of thyroid gland
- Effects of PTH & calcitonin are antagonistic
- Principal effects of calcitonin are to lower
 serum Ca & P by actions on bone & kidney
- It inhibits osteoclastic bone resorption
- In kidney, it reduces both Ca & P reabsorption

Calcitonin

It is a useful drug for treatment of:

- Hypercalcemia (rapid effect)
- **Paget's disease of bone** (relief of pain & to relieve compression of nerves)
- Metastatic bone cancer pain
- Postmenopausal osteoporosis

Glucocorticoids

Alter bone mineral homeostasis by:

- Antagonise vitamin D-intestinal Ca absorption
- Stimulate renal Ca excretion

 Prolonged administration causes osteoporosis in adults, retarded skeletal development in children

Estrogens

- Estrogens reduce bone resorbing action of PTH
- Estrogen administration leads to increased
 1,25(OH)2 D level in blood
- The principal therapeutic application for estrogen treatment or prevention of postmenopausal osteoporosis

Bisphosphonates

- Action: inhibit activation & function of osteoclasts
- Alendronate, pamidronate, risedronate are licensed for the treatment of osteoporosis
- Others are used in Paget's disease of bone & hypercalcemia due to cancer

Calcium and Bone-Related Diseases

1. Hypocalcemia

 Features are neuromuscular: tetany, paresthesis, laryngospasm, muscle cramps, & convulsions

Causes of hypocalcemia:

- Hypoparathyroidism, vitamin D deficiency, renal failure, malabsorption

Treatment of hypocalcemia

1. Calcium (i.v, oral)

- **Calcium gluconate** is preferred for **i.v. use** because it is less irritating to veins (in acute hypocalcemia)

- **Calcium carbonate** is preferred for **oral use** because of its high percentage of Ca, low cost

2. Vitamin D: when rapid action is required, 1,25 (OH)₂ D (calcitriol) is vitamin D metabolite of choice, it is capable of raising serum Ca within 24-48 hrs

2. Hypercalcemia

- Hypercalcemia causes CNS depression, including coma, and is potentially lethal (cardiac arrest)
- Causes of hypercalcemia:
 - Hyperparathyroidism, cancer, hypervitaminosis D, sarcoidosis, immobilisation

Treatment of hypercalcemia

- 1. Rehydration with saline solution (restores urine flow) & diuresis with a loop diuretic such as furosemide (enhance urine flow & increase renal Ca excretion)
- 2. Bisphosphonates
- 3. Calcitonin

Treatment of hypercalcemia

- Phosphate: i.v. should be used only after other methods have failed to control symptomatic hypercalcemia
- 5. **Dialysis** is quick and effective in severe cases or with renal failure

3. Nutritional rickets

- Is a softening of bones in children, potentially leading to fractures & deformity
- It can occur in adults
- Causes: vitamin D deficiency, lack of adequate Ca in diet
- Treatment:
- Daily intake of 400 units of vitamin D
- Diet should contain Ca & P

4. Osteoporosis

- Is abnormal loss of bone predisposing to fractures
- bone mineral density is reduced, bone microarchitecture is disrupted
- It is common in women after menopause (post-menopausal osteoporosis) but may develop in men & premenopausal women
- 1 in 3 women & 1 in 12 men over age of 50 have osteoporosis

*ADAM.

Causes of Osteoporosis

- Side effect of chronic administration of glucocorticoids
- Manifestation of endocrine disease such as hyperparathyroidism
- Feature of malasbsorption syndrome
- Alcohol abuse
- Idiopathic (without obvious cause)

Treatment of Osteoporosis

- Estrogen replacement therapy
- Postmenopausal osteoporosis is due to estrogen deficiency & is treated with estrogen
- Bisphosphonates: alendronate & more recently risedronate
- Calcitonin: reduces bone resorption acutely
- Dietary Ca supplements & vitamin D

Thank you