

Biostatistics

LI
$3^{\text {rd }}-7=2022$

PROF, DR. WAQAR AL-KUBAISY

Biostatistics

The terms/concepts:
Variable
Distinguish between
Nominal
Ordinal
Discrete
continuous variable
Distinguish between quantitative and quantitative data
Frequency distribution
Relative frequency
Cumulative frequency
\checkmark Transform data set into information in the form of
Tables,
Graphs

Biostatistics consist of

1-Collection of data .

2-Presentation of data

3-.Estimation of data

Statistics

Is a field of study that concern with
The Collection ,Organization and Summarization of data.

And

Drawing of inference about a body of data when only part of data are observed

Biostatistics

When data being analyzed are derived from biological sciences and Medical observation .

Biostatistics breaks into two main distinct components or two distinct subcategories:

I- Descriptive Biostatistics.

II- Inferential Biostatistics.
| Descriptive Statistics
It is a series of procedures designed
to clarify the data,
so that
its principal characteristics and
 main features.
for the purpose of
conclusion at a late stage.
This one serve as devices for
> organizing and summarizing data and
$>$ bringing into a focus their essential characteristics
$>_{7 / 322}$ Reduce the information to a manageable size ${ }_{7}$

This include:
Presentation of data by

1. Graph and or
2. Tables
3. Calculation or numerical summaries, such as Frequency, Average, Mean, Median, Mode
Percentages
Biostatistics consist of
1-Collection of data.
2-Presentation of data
3-.Estimation of data

Data

* Data are the values you get when you measure a variable example 20 years old, (age)
55 males. (Sex)
170 cm height
- The values of the observations for the variable is known as data.

Data are the raw material of statistics Data carry little or no meaning when considered alone

- needs further steps to become valuable (information)

Variable (Y)

It is the characteristics , that observed in: persons, places or things.
This characteristic is not the same when observed in different possessors

It is any aspect of an individual that is measured Like; B.P. cholesterol age, sex ,Blood

Variable sugar ??
is some thing whose value can vary
example age ,sex, weight height??

An important thing is the type of the variable concerned

Type of variable
There are two major types of variable
Each of these can be subdivided into two subtypes

1. Categorical variable
(Qualitative Variable)

1.Categorical variable a- Nominal b- ordinal

2 Metric variable
(Quantitative Variable)
2 Metric variable a-Continuous
b-Discrete

1. Categorical variable

a- Nominal

Example
Blood group of 100 persons Just categorize the blood group into
$A, B, A B, \& O$
then counting the No. of individuals (frequency)
in each group
(1) Data do not have any unit
(2) ordering of the categories is completely subjective, $A B, A, B, \& O$
$0, A B, A \& B$

b- Ordinal ترتيبي

1.Categorical variable

The difference between any adjacent two grades is not necessarily be the same (equal)

Therefore

1-the data are not properly measures

but

assessed in some way
2-these data are not real numbers and
as it is not real data
3--we cannot apply any arithmetic's roles
no adding,
no subtracting. the ordinal vales
no multiply or
no divide

4- Data do not have any unit

5- ordering of the categories is not subjective the order category in a meaningful way

Ordinal
 $>^{*}$ order category in a meaningful way

$>$ *difference between any adjacent two grades is not necessarily be equal

Have no interval property
$>*$ not properly measures
*not real numbers
$>$ cannot apply any arithmetic's roles
> Data do not have any unit

2 Metric variable Continuous variable

Example Height ,Weight

1-usually comes from measuring
Can be properly measured

2- they are a real numbers
so
3- we can apply all mathematics' operations
4- All have units of measurement attached to them
5-The difference between any pairs of adjacent values are exactly the same (equal) this is
known as
the interval property
*Can be properly measured
may assume any value along a continuum .

The value of a C.V. is not limited to the set of integers Height :158,160,

$157.9,160.6160 .8$

dose not possess a gap or interruptions.
ex.
B.P. Hb Blood sugar . ???????????

2 Discrete variable
usually comes from counting such as
No. of death.
No. of students
No. of patients
all are
discrete metric variable
??????

It is real numbers So........???
It can be counted
It have a unit of measurements
It is integer, measurement or values are integers

They have the same interval and ratio properties as the continues variables

Have the variable got unit

can the data put in a meaning full order

Do the data come from measuring or counting

Quantitative Variable

The one that can be measured by the usual sense .

Qualitative Variable

The one which are not capable of being measured by the usual sense.

Biostatistics consist of
1-Collection of data .
2-Presentation of data .
3- Estimation of data

age of 50 patients

68, 62, 62, 66, 68, 65, 64,

38. 42, 47. 50,55, 56, 60

80
J
77,80, 81, 89, 86, 85, 83,72, 70, 71, 79, 76, 77, $80,90,97,94,90,65, .60,67,6388,84,84,87$
???????

Presentation of Data

Data that collected from any source, are inadequate for planning .

Data need to be transformed into information

- by reducing them,
- by summarization and
-Arrange it in a simple and useful way
to
- bring out the important point clearly \& concise

This mean that

display the important feature of the sample .

Descriptive Statistics

This one serve as devices for organizing and summarizing data
and
bringing into a focus their essential characteristics
Descriptive statistics.
reduce the information to a manageable size
This include

- table
- graph, chart or
- Numerical Description

An important thing is the type of the variable concerned.

Table

It is first step in data presentation.
Is the simplest and often most useful summary of data

An important thing is the type of the variable concerned.

Nominal Simple Frequency Table

example
Blood group of 95 children with leukemia shows as (22)A, (25)B, (18)AB, \& O(30) count the No. of observation in each category, these count are called Frequencies .
$>$ frequency
$>$ Relative frequency
percentage frequency
of Bl. group distribution for of 95 children with leukemia

An important thing is the type of the variable concerned.

Simple Frequency Table

Blood group	Frequency $\mathbf{N}=95$	Relative Frequency	Percentage $\%$
A	22	???	$? ?$
B	25		
AB	18		
O	30		
Total	95		

Nominal Simple Frequency Table continuo..

Relative frequency

Frequency each category divided by the total frequency. No. of children of each category (Bg) divided by the total no of children.

Percentage frequency
Frequency of each category divided by the total frequency
X 100
Relative or percentage frequency are often more useful than the actual number of individuals in each category.
???????

Simple Frequency Table

Blood group	Frequency $\mathrm{N}=95$	Relative Frequency	Percentage $\%$
A	22	$22 / 95=0.231$	23.15
B	25	0.26315	26.315
AB	18	0.18947	18.947
O	30	0.3157	31.5789
Total	95	$? ? ? ? ?$	$? ? ? ?$

Relative or percentage frequency are often more useful than the actual number of individuals in each category. Why ????????

Type of feeding
Infants 600600

Breast 478

Bottle 65
Mixed 57
Simple Frequency Table

Type of feeding	No. of cases (F)	R.F.	percentage $\%$
Breast	478	0.79	79.7
Bottle	65	0.108	10.8
Mixed	57	0.095	9.8
Total	600	????	100

b- ordinal Variable

120 individuals were asked about their level of satisfaction toward the health care given by Hospital X. The response as follows
29 very satisfied, 39 satisfied, 20 neutral
18 unsatisfied, 14 highly unsatisfied

level of satisfaction	Frequency $\mathrm{N}=120$	Relative Frequency	Percentage $\%$
very satisfied	29	$0.24166 ? ?$	24.166
satisfied	39	0.325 ??	32.5
neutral	20	0.1666	16.66
unsatisfied	18	0.15	15
highly unsatisfied	14	0.11666	11.66
Total	120	$? ? ? ?$	99.929

Ex.

The mathematic marks of $\mathbf{2 6}$ secondary school students at Amman in 2022
$\begin{array}{lllllllll}15.2 & 31.3 & 14.9 & 16.3 & 19.3 & 18.2 & 20.2 & 12.8 & 14.7\end{array}$
$\begin{array}{lllllllll}29.4 & 21.1 & 20.4 & 13.6 & 22.4 & 14.0 & 14.3 & 22.8 & 26.7\end{array}$
$\begin{array}{llllllll}18.9 & 13.7 & 17.7 & 27.2 & 19.3 & 16.1 & 13.5 & 11.2\end{array}$
? ? ? ?

Metric variable
Continuous variable
? ? ? ?

Continuous Metric variable

The most useful way for presenting data of CMV to produce grouped frequency distribution

- grouping data first These group of data we call it class interval
\checkmark Each group of data (class interval)consist of values within certain range

mathematic marks	Frequency	Cumulative frequency
$10.0-14.9$	$\mathbf{9}$	$\mathbf{9}$
$15.0-19.9$	8	17
$20.0-24.9$	$\mathbf{5}$	22
$25.0-29.9$	$\mathbf{3}$	25
$30.0-34.9$	$\mathbf{1}$	26
	26	

Continuous Metric variable
to produce grouped frequency distribution table * Grouping data into groups of equal width

* then construct frequency distribution table for grouped data
* Counting the frequency of observation within the groups(class interval)

mathematic marks	Frequen cy	Cumulative frequency
$10.0-14.9$	9	9
$15.0-19.9$	8	17
$20.0-24.9$	5	22
$25.0-29.9$	3	25
$30.0-34.9$	1	26
	26	

Each group of data
contain No. of observation
7/3/22

Use sturges rule :

K $13.322(\log N)$

$\mathrm{K}=$ No. of class intervals.
$N=$ sample size .
Width of class intervals:

W= width .
R= Range = highest $\boldsymbol{-}$ lowest .
$K=$ No. of class intervals .

Continuous Metric variable
Frequency distribution of mathematic marks of 26 secondary school students at Amman in 2022

mathematic marks	Frequency	Cumulative frequency
$10.0-14.9$	9	9
$15.0-19.9$	8	17
$20.0-24.9$	5	22
$25.0-29.9$	3	25
$30.0-34.9$	1	26
Total	26	

frequency distribution table
? ? ? ?

Example

The following data representing age (years) of 50 patients with diabetes Mellitus collected from Al Karak Hospital during march 2022

68, 62, 62, 66, 68, 65, 64, 71,77, 74, 20, 33, 38. 42, 47. 50,55, 56, $6072,8074,75,74,77,80,81,89,86,85$, 83,72, 70, 71, 79, 76, 77, 80, 90, 97, 94, 90,65, .60, 67, 63 88, 84, 84, 87

```
? ? ? ?
????????/
```

An important thing is the type of the variable concerned.

Age(year) of 50 patients with diabetes Mellitus attending Al Karak Hospital during march 2015

AGE year	Freq	Commul. frequency	Relative frequency	R.F. R.F.	Cumul. R.F.	\%cum Freq.
$20-29$	1		$? ?$	$? ?$		
$30-39$	2		$? ? ?$	$? ?$		
$40-49$	2		$? ?$			
$50-59$	3	$?$				
$60-69$	12					
$70-79$	14	$?$				
$80-89$	12					
$90-99$	4		$?$	$?$		$?$
total	50	$?$				

Relative Frequency (proportion

Dividing the No. of values (observation, frequency) in a particular class interval by the total No. of values (observation frequency) in whole data

$$
\frac{1}{50} \quad \frac{2}{50} \quad \frac{3}{50} \quad \frac{12}{50} \quad \frac{14}{50} \quad \frac{12}{50} \quad \frac{4}{50}
$$

Percentage of Frequency

Dividing frequency of each class interval by the total No. of observation and then multiply by 100 .

$$
\begin{array}{|llllllllllll}
\hline \frac{1}{50} & 100 & \frac{2}{50} & 100 & \frac{3}{50} & 100 & \frac{12}{50} & 100 & \frac{14}{50} & 100 & \frac{12}{50} & 100
\end{array} \frac{4}{50} 100
$$

\square Cumulative Freq. Dist.

- That is to convert the frequencies distribution into less than and more than .
\& This is done by simply
- Adding two or more classes frequency
- Starting either at the top or at the bottom of the distribution.
$1+2++2+3+12+14+12+4=50$
\square Cumulative Relative and Percentage Dist.
- add two or more Relative frequencies together . $0.02+0.04+0.04+0.06+0.24+0.28+0.24+0.08=1$
- Add the \% instead of the frequencies, starting either at the top or at the bottom .

AGE year	frequency	Commutative frequency	Relative frequency	$\%$ R.F.	Cumulativ R.F.	\%cum Freq.
$\mathbf{2 0 - 2 9}$	1	$\mathbf{1}$	$\mathbf{0 . 0 2}$	$\mathbf{2}$	0.02	2
$\mathbf{3 0 - 3 9}$	2	$\mathbf{3}$	$\mathbf{0 . 0 4}$	$\mathbf{4}$	0.06	6
$\mathbf{4 0 - 4 9}$	2	$\mathbf{5}$	$\mathbf{0 . 0 4}$	$\mathbf{4}$	0.1	10
$\mathbf{5 0 - 5 9}$	3	$\mathbf{8}$	$\mathbf{0 . 0 6}$	$\mathbf{6}$	0.16	16
$\mathbf{6 0 - 6 9}$	12	$\mathbf{2 0}$	$\mathbf{0 . 2 4}$	$\mathbf{2 4}$	0.4	40
$\mathbf{7 0 - 7 9}$	14	$\mathbf{3 4}$	$\mathbf{0 . 2 8}$	$\mathbf{2 8}$	0.68	68
$\mathbf{8 0 - 8 9}$	12	$\mathbf{4 6}$	$\mathbf{0 . 2 4}$	$\mathbf{2 4}$	0.92	92
$\mathbf{9 0 - 9 9}$	4	$\mathbf{5 0}$	$\mathbf{0 . 0 8}$	$\mathbf{8}$	1.00	100
total	50	---	$\mathbf{1}$	$\mathbf{1 0 0}$	--	---

Points should be keep in mind

1-No. of class intervals (5-15) .
2-Classes interval should notoverlapping .
3-All classes interval should have the same width across all data (constant width).
4-There should be no gaps between class interval .
5-Every observation will be uniquely classifiable into one and only one class interval .
\square Class Marks
It is the midpoint of the class interval .

* It could be obtain by adding the lower and upper limits of a class interval and divided by two

Graphical Techniques

Presentation of Data table graph, chart or Numerical Description some times table presentation will give some difficulties to the reader especially to non numerical readers
$>$ Picture speaks lauder than thousand words .
$>$ Graph have powerful impact on the imagination of population .
$>$ Relationships, Trends and Contrasts are often more readily appreciated from diagram than table ..

An important thing is the type of the variable concerned.

