

Biostatistics

LIV

PROF. DR. WAQAR AL-KUBAISY

-this approach might not be enough,
-comparisons between one set of data \& another
-summarize data by one more step further.
-presenting a set of data by a

- \quad single Numerical value

The central value as
 representative value in a set of data,

1-Measures of central tendencies (Location).
A value around which the data has a tendency to congregate (come together)or cluster

2-Measures of Dispersion, scatter around average
A value which measures
the degree to which the data are or are not, spread out

The central value as

1-Measures of central tendencies (Location) .
A value around which the data has a tendency to congregate (come together)or cluster 2-Measures of Dispersion, scatter around average
A value which measures
the degree to which the data are or are not, spread out

1-Measures of central tendencies (Location)

75, 75, 75, 75, 75, 75, Mean = ????
75, 70, 75. 80, 85.
Mean = ????

60, 65, 55, 70, 75, 75, ,70, 80, Mean= ????

2-Measures of Dispersion,
$\sum \mathrm{X}$
N

```
The central value as
1-Measures of central tendencies
2-Measures of Dispersion,
```


Measures of Dispersion (Measures of Variation) (Measures of Scattering) Measures of spread

Measures of Dispersion

SHOOTER B

Both shooters are hitting around the "centre" but shooter B is more "accurate"

Measures of Dispersion

Measures of Dispersion
(Measures of Variation)
(Measures of Scattering) measures of spread

1- Range
2-Interquartile range
3- Variance

4- Stander Deviation

5- Coefficient of variance
the choice of the most appropriate measure depends crucially on the type of data involved

Measures of spread

Measuring of spread are very useful.
There are three main measures in common use .
once again the type of data influence the choice of an appropriate measure
the choice of the most appropriate measure depends crucially on the type of data involved

The Range

simplest

1- Range
2-Interquartile range
3- Variance
4- Stander Deviation
5-Coefficient of variance
most obvious one of dispersion.

It is the distance from the smallest to the largest It Obtained by
subtracting lowest value from the highest value in a set of data.
$\begin{array}{llllllll}\text { Pulse rate } & 70 & 76 & 74 & 78 & 72 & 74 & 76\end{array}$
Range $=78$ - $70=$
The range is best written
like rang of data (from- to) 70-78
rather than single-valued difference which is much less informative
-The range is not affected by skewness

$$
\begin{array}{llllllll}
7072 & 74 & 76 & 76 & 78 & 78 & & 78-70
\end{array} 70-78
$$

sensitive to the addition or removal of an outlier value 667074 90, $100120124 \quad 124-66$ 66-124

Its disadvantage

it is based on only two observations
(the lowest and highest value) and give no idea about others, not take into consideration other values in data *sensitive to an outlier value Therefore It is not very useful measures of variation, because it does not use other observation

Therefore;

Sensitive an outlier value Interquartile rang (l q r).
\checkmark measure the variation of one observation from the other
\checkmark Standard deviation

Interquartile rang (l q r).

Percentile

A percentile provides information about how the data are spread over the interval from the smallest value to the largest value.

The pth percentile (25\%) (30\%)is a value such that at least p percent of the observations are less than or equal to this value and at least (100-p) (75\%) (70\%) percent of the observations are greater than or equal to this value.

The pth percentile is a value so that roughly p\% of the data are smaller and (100-p)\% of the data are larger. Percentiles can be computed for ordinal, interval, or ratio data. Three Steps for computing a percentile.

1. Sort the data from low to high;
2. Count the number of values (n);
3. Select the $p^{*}(n+1)$ observation.

Three Steps for computing a percentile.

1. Sort the data from low to high;
2. Count the number of values (n);
3. Select the $p^{*}(n+1)$ observation

Examples

The following data represents cotinine levels in saliva (nmol/l) after smoking. We want to compute the 50th percentile.
$73,58,67,93,33,18,147$
Sorted data: 18, 33, 58, 67, 73, 93, 147
There are $n=7$ observations.
Select $0.50 *(7+1)=4$ th observation.
Therefore, the 50th percentile equals 67 .
Notice that there are
three observations larger than 67 and
three observations smaller than 67.

Examples

The following data represents cotinine levels in saliva (nmol/l) after smoking. We want to compute the 20th percentile.
$73,58,67,93,33,18,147$
Sorted data: 18, 33, 58, 67, 73, 93, 147
Suppose we want to compute the 20th percentile. Notice that $p^{*}(n+1)=0.20^{*}(7+1)=1.6$. This is not a whole number so we select halfway between 1st and 2 nd observation
they have to go six tenths of the way to the second value.

Calculation of percentile value

The pth percentile is the value in the $p / 100(n+1)$ th position.

For example
the 20th percentile
Calculation of percentile value the birth weight(grm) of 30 infants which we put in ascending order.

2860	2994	3193	3266	3287	3303	3388
3399	3400	3421	3447	3508	3541	3594
3613	3615	3650	3666	3710	3798	
3800	3886	3896	4006	4010	4090	4094
4200	4206	4490				
$7 / 6122$						

Calculation of percentile value

The pth percentile is the value in the $p / 100(n+1)$ th position.
the 20th percentile is the
20/100($n+1$) with the BW values
20/100 (30 +1)
0.2×31 observations $=6.2$ observation
the birth weight of 30 infants which we put in ascending order.
$\begin{array}{lllllllll}2860 & 2994 & 3193 & 3266 & 3287 & 3303 & 3388 & 3399 & 3400\end{array}$ $\begin{array}{llllllllll}3421 & 3447 & 3508 & 3541 & 3594 & 3613 & 3615 & 3650 & 3666\end{array}$ $\begin{array}{llllllll}3710 & 3798 & 3800 & 3886 & 3896 & 4006 & 4010 & 4090\end{array} 4094$ 420042064490

Cont. ..Calculation of percentile value

The 6th value is 3303 g the 7th value is 3388 g
the 20th percentile is $3303+0.2$ of 85 g which is
$3303 \mathrm{~g}+0.2 \mathrm{x} 85 \mathrm{~g}=$
$=3303 \mathrm{~g}+17 \mathrm{~g}$
$=3320 \mathrm{~g}$

a difference of 85 g

the birth weight of 30 infants which we put in ascending order.

| 2860 | 2994 | 3193 | 3266 | 3287 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3303 | 3388 | 3399 | 3400 | 3421 | 3447 |
| 3508 | 3541 | 3594 | 3613 | 3615 | 3650 |
| 3666 | 3710 | 3798 | 3800 | 3886 | |
| 3896 | 4006 | 4010 | 4090 | 4094 | |
| 4200 | 4206 | 4490 | | | |

The pth percentile is the value in the $p / 100(n+1)$ th position.

Similarly we could calculate
cont.Calculation of percentile value
the deciles
which subdivide the data values into 10 (not 100)equal division, and

Quintiles

which sub-divide the values into
five equal -sized groups
Collectively we call
percentiles,
decileSdivide the sorted data into ten equal parts, so that each part
represents $1 / 10$ of the sample or population. and

quintiles

The pth percentile is the value in the $p / 100(n+1)$ th position.

Interquartile rang (i q r).
One solution to the problem of the sensitivity to extreme value (outlier) is to
\checkmark chop the quarter(25 percent) of the values of both ends of the distribution
(which removes any troublesome outliers)
then measure the range of the remaining values
\square this distance is called
\square interquartile range or iq r .

Calculation of igr

To calculate iqr we need to determine two values
first quarantile (Q1)
The value which
cuts off the bottom
25 percent of values
third quarantile (Q3) The value which cuts off the top 25 percent of values,

The interquartile range is then written as (Q1 to Q3)
$31 X 0.25=7.75$
$31 X .75=23.25$ the birth weight of 30 infants which we put in ascending order. $\begin{array}{llllllllll}2860 & 2994 & 3193 & 3266 & 3287 & 3303 & 3388 & 3399\end{array}$ $\begin{array}{lllllllll}3400 & 3421 & 3447 & 3508 & 3541 & 3594 & 3613 & 3615\end{array}$ $\begin{array}{llllllllllllll}3650 & 3666 & 3710 & 3798 & 3800 & 3886 & 3896 & 4006\end{array}$ $4010 \quad 4090 \quad 4094 \quad 4200 \quad 4206 \quad 4490$

The pth percentile is
the value in the $\mathrm{p} / 100(\mathrm{n}+1)$ th position.

	$7.75^{\text {th }} 3399-3388=11 \times .75=8.25+3388=$
with the BW data	3396.25
Q1=3396.25g and	$0.75 \times 31=23.25^{\text {th }}$
Q3 $=3923.50 \mathrm{~g}$	4006-3896=110x.25=27.5+3896=3923.5

the birth weight of 30 infants which we put in ascending order.
$2860 \quad 299433193 \quad 32663287 \quad 3303 \quad 3388 \quad 33993400$
$\begin{array}{llllllllll}3421 & 3447 & 3508 & 3541 & 3594 & 3613 & 3615 & 3650 & 3666\end{array}$
$\begin{array}{llllllllllll}3710 & 3798 & 3800 & 3886 & 3896 \square 4006 & 4010 & 4090 & 4094\end{array}$
420042064490
Therefore iqr $=3369.25$ to $\mathbf{3 9 2 3 . 5 0) g}$ the middle 50 percent

Calculation of iqr

the middle 50 percent of infant weighed between 3396.25 and 3923.50 g
\checkmark The interquartile range
indicate
the spread of the middle 50\%of the distribution,
together with the median is useful adjunct (accessory) to the range
it is less sensitive to the size of the sample providing that this is not too small

The interquartile range is not affected either by

Outlier

skewness

BUT

it does not use all of the information in the data set since it ignores the bottom and top quarter of values.
measure the variation of one observation from the other
\checkmark Standard deviation

60, 65, 55, 70, 75, 75, ,70, 80, Mean= ????
the mean (average) distance of all data values from the over all mean of all values.

Standard deviation (SD)

The limitation of iqr it does not use all of the information in the data since it omits the top and bottom quarter of values.
An alternative approach use the idea of summarizing spread by measuring
the mean (average) distance of all data values from the over all mean of all values.
-The smaller the mean distance is
\checkmark the narrower the spread of values must be and visa versa
this is known as standard deviation

Measures of Dispersion

SHOOTER A

SHOOTER B

Both shooters are hitting around the "centre" but shooter B is more "accurate"
-The smaller the mean distance is
\checkmark the narrower the spread of values

Variance \mathbf{S}^{2}

It is the Average of squared deviation of observation from the mean in a set of data .

$$
\begin{array}{|cc|}
\hline S^{2} \quad \frac{(X \quad \bar{X})^{2}}{N} 1 \\
\hline
\end{array}
$$

$$
3.179 \text { score }^{2}
$$

????

The Disadvantage or drawback of variance that its unit is squared $\mathbf{K g}^{\mathbf{2}}$, bacteria ${ }^{2}$....., So
restore the squared unit into its original form by
taking the square root of this $\left(S^{2}\right)$ value, this is known as S.D .

Standard Deviation \pm S.D.

It is the square root of variance.

$$
\begin{array}{|ll|}
\hline S^{2} & \left(\begin{array}{ll}
X & \bar{X}
\end{array}\right)^{2} \\
\hline N \quad 1 \\
\hline
\end{array}
$$

\pm S.D (S) it is the square root of the Average square deviation of observation from the mean in a set of data

One advantage of SD is that unlike the iqr it uses all the information in the data

Steps in calculating S.D

1. Determine the mean

2-Determine the deviation of each value from the mean

$$
\text { (sum of square) } . \quad\left(\begin{array}{ll}
X & \bar{X}
\end{array}\right)^{2}
$$

5-Divide this square deviation of value from mean by $\mathrm{N}-1$

$$
\frac{\left(\begin{array}{ll}
X & \bar{X}
\end{array}\right)^{2}}{N 1}
$$

6-Take the square root of deviation of value from mean by $\mathrm{N}-1$

$$
\sqrt{\frac{(X \bar{X})^{2}}{N 1}} \quad S . D
$$

Short Cut Method

Short Cut Method for S.D

1-Square each absolute individual value . X^{2}
2-Sum these squared values $(X)^{2}$.
3-Sum the all absolute value of observation $X_{1} \cdot X_{2} \quad X_{3} \ldots \ldots . \quad X$
4-Square this sum of absolute values
5-Divide this sum of absolute values by $\mathrm{N} \frac{(X)^{2}}{N}$
6-Subtract $\frac{(X)^{2}}{N}$ from $\sum X^{2} \longrightarrow X^{2} \frac{(X)^{2}}{N}$ (sum of square) 7-Divided all this result by $\mathrm{N}-1$,

8-Take the square root of this last result,

Short Cut Method

Score	Freq.(No.of Students)	$X F$	$X^{2} F$
6	2	$6 \times 2=12$	$6^{2} \times 2=72$
2	4	$2 \times 4=8$	$2^{2} \times 4=16$
4	3	$4 \times 3=12$	$4^{2} \times 3=48$
1	5	$1 \times 5=5$	$1^{2} \times 5=5$
3	2	$3 \times 2=6$	$3^{2} \times 2=18$
2	6	$2 \times 6=12$	$2^{2} \times 6=24$
total	22	55	183

$S^{2} \frac{(X \bar{X})^{2}}{N 1} \quad(X \bar{X})^{2} \quad X^{2} \frac{(X)^{2}}{N}$
$S^{2} \frac{X^{2} \frac{(X)^{2}}{N}}{N 1} S^{2} \frac{183 \frac{55^{2}}{22}}{22^{\text {cor }}} 1^{2} \frac{183137.5}{21} 2.166$

Disadvantage Limitation or Drawback of S.D

It is depend on the unit of measurement,
we can't compare between two or more data to overcome this

Coefficient of Variation C.V
It is representing by measuring the variation in relation to the percentage of mean of that data

$$
\begin{array}{lll|}
\hline C . V & \frac{S . D}{\bar{X}} & 100 \\
\hline
\end{array}
$$

-C.V is used
to compare between two or more data
$>$ with different units of measurement .
$>$ data with large difference between their means .

Interpreting Standard Deviation

For bell-shaped shaped distributions, the following statements hold:
-Approximately 68% of the data fall between \bar{x} is and \bar{x} is
-Approximately 95% of the data fall between $\bar{r} \quad 2 \mathrm{~s}$ and $\bar{x}_{-} \quad 2 \mathrm{~s}$

- Approximately 99.7% of the data fall between \bar{x} is and \bar{x} is

For NORMAL distributions, the word 'approximately' may be removed from
The above statements.

Q1
Thirty (30) pregnant women attending Al- Karak antenatal clinic during 23-februry 2021 showing gain in weight as follows:

Weight qain (ko	NO.of women
4	3
7	5
10	10
12	8
16	4

1-Present this data graphically,
2- Compute the measures of Central tendency 3- Compute Measures of Dispersion

Q1
SD used with median
SD used with rang
SD used in nominal data
IQR used with the mean
Variance is the best measurement of dispersion Q2 Measures of dispersion are
1
2
3
4
5
6

1. Median is the value with a highest frequency
2. When the data is skewed, median is the appropriate measures of CT
3. Mean is appropriate measures of Ct in ordinal data 4. Mode used when we have Metric continuous data

5- mean is unique what ever the size of data is

