Biochem - RS

The molecular basis of lung diseases

- ▼ Hereditary RDS (Autosomal recessive SP-B deficiency)
 - SP-B from single gene in chromosome 2
 - Mutation: 2 base pair insertion (codon 121)
 - · Causes frame-shift and premature termination
 - Complete absence of proSP-B and mature
 - Infants develop severe respiratory distress (like respiratory distress in premature infants but does not respond to treatment)
 - · Causes death if lung transplantation not performed
- ▼ Emphysema resulting from A1-AT (alpha 1 antitrypsin) deficiency
 - Gene for A1-AT is on chromosome 14
 - Single purine base mutation (GAG to AAG)
 - At position 342 (positive lysine becomes negative glutamic acid)
 - This mutation alters charge attraction between amino acids 342 and 290 (Fold cannot form
 —> tertiary structure changes —> Dimerization —> obstruction of secretion of A1-AT)
 - · Recessive mutation (in a heterozygote A1-AT levels are sufficient to protect alveoli)
 - Can be reversed by weekly IV administration of A1-AT
- ▼ Emphysema from methionine oxidation
 - Methionine 358 of A1-AT is necessary for binding elastase
 - Cigarette smoke oxidizes Met-358
 - Smoking also increases retention of neutrophils to lungs (neutrophils more attached to endothelium, and more stiff so can't escape capillary)
 - Can be reversed by weekly IV administration of A1-AT

- Cystic fibrosis (thick sticky mucus builds up in lungs)
 - Autosomal recessive (Gene is on chromosome 7)
 - Defective gene codes for CFTR (that pumps CL- out)
 - Most common mutation of CFTR gene is a three-base deletion (—> loss of phenylalanine)
 which makes the mutant allele shorter, distinguishing it from healthy allele through PCR
 and gel electrophoresis (mutant allele moves further and faster)
 - Defected CFTR causes CL- ions to remain in cells, which takes up water from surrounding (osmosis) making mucus thick in several organs
 - Thick mucus favors infections like pneumonia, so if left untreated children rarely survive more than 5 years
 - Has no cure (but treatments that prevent and control infection as well as loosen and remove mucus are improving)

- ▼ Immobile cilia syndrome (primary ciliary dyskinesia)
 - · Rare autosomal recessive
 - Abnormalities in ciliary structure and function (later found that it is caused by disorganized motion —> uncoordinated and ineffective clearance)
 - Leads to respiratory secretions to collect, thicken and promote infection
 - Permanent lung damage develops at an early age without treatment (which may make patients need lung transplantation)
 - Goal of treatment: Minimize damage caused by chronic infection (airway clearance therapy, secretion removal and bronchodilation, and aggressive antibiotics
 - Possible defects in cilia
 - Dynein arm: Outer and inner are totally or partially absent, OR only outer Or only inner OR short dynein arms
 - 2) Radial spoke: total absence of radial spoke OR Absence of head
 - Microtubular transposition: Absence of central tubules AND Outer doublet go to the center

Done by: Raghad Amr