Chemistry

Chapter 5

Gases

Properties of gases

- Uniformly fill any container and take its shape.
- Easily compressed.
- Mixes completely with any other gas.
- Exerts pressure on its surroundings.

Measurement of Pressure:

- The atmospheric pressures is measured by barometer.
- The pressure of a gas confined in a container is measured by manometer. (car tire, home gas cylinder, ...)

Section 5.1

Pressure

Pressure:

Pressure $=\frac{\text { force }}{\text { area }}$

- SI units = Newton/meter ${ }^{2}=1$ Pascal (Pa)
- 1 standard atmosphere $=101.325 \mathrm{KPa}$; $(101,325 \mathrm{pa})$
- 1 standard atmosphere $=1 \mathrm{~atm}$

$$
\begin{aligned}
& =1.01325 \mathrm{bar} \\
& =760 \mathrm{~mm} \mathrm{Hg}=760 \text { torr } \\
& =14.7 \mathrm{Lb} / \mathrm{in}^{2} ;(\text { psi: pound per square inch })
\end{aligned}
$$

Section 5.1

Pressure

Example: Pressure Conversions:

The pressure of a gas is measured as 2.5 atm . Represent this pressure in both torr and pascals.

$$
\begin{aligned}
& (2.5 \mathrm{~atm}) \times\left(\frac{760 \text { torr }}{1 \mathrm{at} \text { n }}\right)=1.9 \times 10^{3} \text { torr } \\
& (2.5 \mathrm{~atm}) \times\left(\frac{101,325 \mathrm{~Pa}}{1 \mathrm{~atm}}\right)=2.5 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

The Gas Laws of Boyle, Charles, and Avogadro
Variables affecting the state of a gas:

- Temperature.
- Pressure
- Volume
- Number of moles

$$
(T, P, V, n)
$$

Ideal Gas Law

Pressure (P), temperature (T), and number of moles (n) are related to the volume as follows:

- Volume is inversely proportional to pressure, so, V $=\mathrm{k} / \mathrm{P}$
- Volume is directly proportional to temperature, so, $\mathrm{V}=\mathrm{bT}$
- Volume is directly proportional to number of moles, so, $\mathrm{V}=\mathrm{an}$
K, b, and a are proportionality constants. Consequently:
$\mathrm{V}=(\mathrm{kba})(\mathrm{nT} / \mathrm{P})$
The constants (kba) may be combined in one constant R , so:

$$
V=\frac{n R T}{P}
$$

OR: $\quad \mathrm{PV}=\mathrm{nRT} \quad$ (Ideal Gas Law)
$\square R$ is called universal gas constant.
$R=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}, \quad(\mathrm{R}$ has different values depending on the unit of the pressure.
If certain amount of gas (n) is moved from certain initial state (i) to certain final state (f), then:

$$
\begin{aligned}
\frac{P_{i} V_{i}}{T_{i}} & =\frac{P_{f} V_{f}}{T_{f}} \\
\frac{V_{i}}{T_{i}} & =\frac{V_{f}}{T_{f}}
\end{aligned}
$$

At constant Temperature: $\quad P_{i} V_{i}=P_{f} V_{f}$

Example:

A sample of helium gas occupies 12.4 L at $23^{\circ} \mathrm{C}$ and 0.956 atm. What volume will it occupy at pressure of 1.20 atm at the same temperature?

$$
\begin{gathered}
V_{f}=V i\left(\frac{P_{i}}{P_{f}}\right) \\
\mathrm{V}_{\mathrm{f}}=\left(\mathrm{V}_{\mathrm{i}}\right)\left(\mathrm{P}_{\mathrm{i}} / \mathrm{P}_{\mathrm{f}}\right)=(12.4 \mathrm{~L})(0.956 \mathrm{~atm} . / 1.20 \mathrm{~atm} .)=9.88 \mathrm{~L}
\end{gathered}
$$

-Example: [Temperature in all calculations should be in K] A balloon containing 1.30 L of air at $24.7^{\circ} \mathrm{C}$ is placed into a beaker containing liquid nitrogen at $-78.5^{\circ} \mathrm{C}$. What will the volume of the balloon if the pressure stays constant?

$$
\begin{aligned}
& \mathrm{K}={ }^{\circ} \mathrm{C}+273 \\
& \mathrm{~T}_{1}=24.7+273=297.7 \mathrm{~K} \\
& \mathrm{~T}_{2}=-78.5^{\circ} \mathrm{C}+273=194.5 \mathrm{~K} \\
& \qquad \frac{V_{i}}{T_{i}}=\frac{V_{f}}{T_{f}} \\
& \mathrm{~V}_{\mathrm{f}}=\left(\mathrm{V}_{\mathrm{i}}\right)\left(\mathrm{T}_{\mathrm{f}} / \mathrm{T}_{\mathrm{i}}\right)=0.849 \mathrm{~L}
\end{aligned}
$$

Section 5.3

The Ideal Gas Law
Car tire at $23^{\circ} \mathrm{C}$ with an internal volume of 25.0 L is filled with air to a total pressure of 3.18 atm . Determine the number of moles of air in the tire.

$$
\begin{aligned}
& \mathrm{n}=\mathrm{PV} / \mathrm{RT} \\
& \mathrm{~T}=23+273=296 \mathrm{~K} \\
& \mathrm{n}=(3.18 \mathrm{~atm})(25.0 \mathrm{~L}) /(0.08206 \ldots . .)(296 \mathrm{~K}) \\
&=3.27 \mathrm{~mol}
\end{aligned}
$$

Section 5.3

The Ideal Gas Law

Example:

What is the pressure in a 304.0 L tank that contains 5.670 kg of helium at $25^{\circ} \mathrm{C}$? $\quad \mathrm{PV}=\mathrm{nRT}$
$\mathrm{T}=25+273=298 \mathrm{~K}$ $\mathrm{n}=$ mass/atomic mass $=5.670 \times 1000 / 4=1417.5 \mathrm{~mol}$

$$
\mathrm{P}=\mathrm{nRT} / \mathrm{V} \quad ; \quad \mathrm{R}=0.0821 \mathrm{~L} . \mathrm{atm} . / \mathrm{K} . \mathrm{mol} .
$$

$$
=\ldots . . .
$$

Section 5.3

The Ideal Gas Law

- Example:

At what temperature (in ${ }^{\circ} \mathrm{C}$) does 121 mL of CO_{2} at $27^{\circ} \mathrm{C}$ and 1.05 atm . occupy a volume of 293 mL at a pressure of 1.40 atm.?

Solution:

$$
\begin{gathered}
\frac{P_{i} V_{i}}{T_{i}}=\frac{P_{f} V_{f}}{T_{f}} \\
T_{f}=T_{i} \frac{P_{f} V_{f}}{P_{i} V_{i}} \\
\mathrm{~T}_{\mathrm{f}}=\ldots \ldots . .=\ldots . . .0696^{\circ} \mathrm{C}
\end{gathered}
$$

Section 5.4

Gas Stoichiometry

Standard Molar Volume of an Ideal Gas (SMV)

- SMV is the volume of one mole of a gas under STP
- For 1 mole of an ideal gas at $0^{\circ} \mathrm{C}$ and 1 atm , the volume of the gas is 22.42 L .

$$
\mathrm{V}=\frac{n R T}{P}=\frac{(1.000 \mathrm{~mol})(0.08206 \mathrm{~L} \cdot 2 \mathrm{zm} / \mathrm{K} \cdot \mathrm{~mol})(273.2 \mathrm{~K})}{1.0002 \mathrm{~atm}}=22.42 \mathrm{~L}
$$

- STP = Standard Temperature and Pressure
- $0^{\circ} \mathrm{C}$ and 1 atm
- Therefore, the molar volume is 22.42 L at STP.
- (T,P,V,n)

Section 5.4

Gas Stoichiometry

Example:

A sample of oxygen gas has a volume of 2.50 L at STP. How many grams of O_{2} are present?
$\mathrm{MM}\left(\mathrm{O}_{2}\right)=32 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}=\mathrm{PV} / \mathrm{RT}$
$\mathrm{T}=273 \mathrm{~K}$; $\mathrm{P}=1 \mathrm{~atm} . \quad ; \quad \mathrm{R}=0.0821 \mathrm{~L} . \mathrm{atm} . . .$.
So, n = 0.112 mol ,
mass $=(M M)(n)=(32 . . .).(0.112 \ldots)=3.57 \mathrm{~g}$
OR STP: $1 \mathrm{~mol}=22.42 \mathrm{~L}$

Section 5.4

Gas Stoichiometry

Molar Mass (MM) and Density (d) of a gas

- PV = nRT
- $\mathrm{n}=\mathrm{mass} / \mathrm{MM}$
- Density (d) = mass/V
- PV = (mass/MM)(RT)
- Rearrange for the MM, so:
- $\mathrm{MM}=(\mathrm{d})(\mathrm{RT} / \mathrm{P})$
- Rearrange for the density, So:
- $d=(M M)(P / R T)$
- (P, T, d, MM) (P V T n)

Chapter 5

What is the density of F_{2} at STP (in g/L)?
$\mathrm{d}=(\mathrm{MM})(\mathrm{P} / \mathrm{RT}), \mathrm{STP}(1 \mathrm{~atm}$. and 273 K$)$
$\mathrm{MM}\left(\mathrm{F}_{2}\right)=39 \mathrm{~g} / \mathrm{mol}$
$d=1.70 \mathrm{~g} / \mathrm{L}$
$R=0.0821$ L.atm/mol.K
(i) What is the volume of a mixture of 5.00 g of H_{2} gas and 5.00 g of He gas at STP?
$V=$? $\quad P V=n_{t} R T$
(ii) What is the mass of nitrogen gas $\left(\mathrm{N}_{2}\right)$ that occupies the same volume under the same conditions (STP)?
Solution: $\mathrm{n}=\mathrm{mass} / \mathrm{MM}$
(i) $n\left(\mathrm{H}_{2}\right)=5.00 / 2=2.50 \mathrm{~mol}$.
$n(\mathrm{He})=5.00 / 4=1.25 \mathrm{~mol}$.
$n_{t}=\ldots . . .=3.75 \mathrm{~mol}$.
$\mathrm{V}=\mathrm{n}_{\mathrm{t}} \mathrm{RT} / \mathrm{P}=\ldots . .=(3.75)(0.0821 \ldots)(273 \mathrm{~K}) / 1 \mathrm{~atm} . . .=84.05 \mathrm{~L}$
(ii) $n\left(N_{2}\right)=n_{t}=\ldots .$. $\operatorname{mass}\left(N_{2}\right)=(M M)\left(n_{t}\right)=\ldots=(3.75 \mathrm{~mol}).(28 \ldots)=105 \mathrm{~g}$

Section 5.4

Gas Stoichiometry

Gas Stoichiometry

Methane gas $\left(\mathrm{CH}_{4}\right), \mathrm{V}=2.80 \mathrm{~L}, 25^{\circ} \mathrm{C}, 1.65 \mathrm{~atm}$. reacted with oxygen gas $\left(\mathrm{O}_{2}\right), 35.0 \mathrm{~L}, 31^{\circ} \mathrm{C}, 1.25 \mathrm{~atm}$. To produce CO_{2} and water. what is the mass of CO_{2} produced? What is the volume of CO_{2} produced under 2.5 atm . and $125^{\circ} \mathrm{C}$?

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

n (mole): $0.189 \quad 1.75$?

$$
\begin{aligned}
& \mathrm{n}=\mathrm{PV} / \mathrm{RT} \\
& \mathrm{n}\left(\mathrm{CH}_{4}\right)=(1.65 \mathrm{~atm})(2.8 \mathrm{~L}) /(0.0821 \mathrm{Latm} / \mathrm{mol} . \mathrm{K})(298 \mathrm{~K})=0.189 \mathrm{~mol} . \\
& \mathrm{n}\left(\mathrm{O}_{2}\right)=\ldots \ldots . .=1.75 \mathrm{~mol} .
\end{aligned}
$$

$\therefore \quad \mathrm{CH}_{4}$ is the limiting reactant. NOW: All calculations are based on the L.R.

Section 5.4

Gas Stoichiometry

$\operatorname{Moles}\left(\mathrm{CO}_{2}\right)=$ moles of $\mathrm{CH}_{4}(\mathrm{~L} . \mathrm{R})=0.189 \mathrm{~mol}$.
Mass of CO_{2} produced $=$ moles $\times \mathrm{MM}$

$$
=0.189 \mathrm{~mol} . \times 44 \mathrm{~g} / \mathrm{mol} .=8.3 \mathrm{~g}
$$

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \mathrm{~V}\left(\mathrm{CO}_{2}\right)=\mathrm{nRT} / \mathrm{P} \\
& \quad=(0.189)(0.0821 \ldots)(398 \mathrm{~K}) / 2.5 \mathrm{~atm}=2.47 \mathrm{~L}
\end{aligned}
$$

Exercise:
What is the volume of CO_{2} at STP?

Section 5.5

Dalton's Law of Partial Pressures

- For a mixture of gases $1,2,3, \ldots$ in a container,

$$
P_{\text {Total }}=P_{1}+P_{2}+P_{3}+\ldots
$$

3.0 L $\quad P V=n_{t} R T \quad O 2$

- Volume of gas mixture is V , and contains $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{He}=10.0 \mathrm{~L}$
- $\mathrm{P}($ mixture $)=\mathrm{P}\left(\mathrm{H}_{2}\right)+\mathrm{P}\left(\mathrm{N}_{2}\right)+\mathrm{P}(\mathrm{He})$
- The total pressure exerted is the sum of the pressures that each gas would exert if it were alone under the same conditions of volume, temperature and number of moles.

Example:

A gas mixture of 10 g of each of $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and He under $25^{\circ} \mathrm{C}$ has a volume of 15.0 L .
(i) What is the pressure of the gas mixture?
(ii) What is the partial pressure of $\left(N_{2}\right)$ gas in the mixture?

Section 5.5

Dalton's Law of Partial Pressures
$P=\frac{n_{+} R T}{V}, \quad \mathrm{~T}=298 \mathrm{~K}, \mathrm{~V}=15.0 \mathrm{~L}, \mathrm{R}=0.0821 \mathrm{~L} . \mathrm{atm} . / \mathrm{mol}$. K
$-\mathrm{n}_{\mathrm{t}}=\mathrm{n}\left(\mathrm{H}_{2}\right)+\mathrm{n}\left(\mathrm{N}_{2}\right)+\mathrm{n}(\mathrm{He})$

- $\mathrm{n}\left(\mathrm{H}_{2}\right)=\mathrm{mass} / \mathrm{MM}=10.0 \mathrm{~g} / 2 \ldots=5.0 \mathrm{~mol}$.
- $n\left(N_{2}\right)=10.0 \mathrm{~g} / 28 \ldots=0.357 \mathrm{~mol} . ; n(\mathrm{He})=10.0 / 4.0=2.5 \mathrm{~mol}$.
- $n_{t}=$ PV/RT $=\ldots . .=n\left(\mathrm{H}_{2}\right)+n\left(\mathrm{~N}_{2}\right)+\mathrm{n}(\mathrm{He})=\ldots=7.86 \mathrm{~mol}$.
(i) $\mathrm{P}=\mathrm{n}_{\mathrm{t}} \mathrm{RT} / \mathrm{V}=(7.86$ mole $)(0.082 \ldots .).(298 \mathrm{~K}) / 15.0 \mathrm{~L}$ $=12.82 \mathrm{~atm}$.
(ii) $\mathrm{P}\left(\mathrm{N}_{2}\right)=\mathrm{n}\left(\mathrm{N}_{2}\right) \mathrm{RT} / \mathrm{V}=(0.357 \mathrm{~mol}).(0.082 \ldots).(298 \mathrm{~K}) / 15.0 \mathrm{~L}$ $=0.582 \mathrm{~atm}$.

Section 5.5

Dalton's Law of Partial Pressures
Consider the following apparatus containing helium in both sides at $45^{\circ} \mathrm{C}$. Initially the valve is closed.

- After the valve is opened, what is the pressure of the helium gas, if there is no change in temperature?

Section 5.5

Dalton's Law of Partial Pressures

- $\mathrm{n}_{\text {left }}=P V / R T=(2)(9) /(0.0821 \ldots)(318 \mathrm{~K})=0.689 \mathrm{~mol}$.
- $\mathrm{n}_{\text {right }}=\mathrm{PV} / \mathrm{RT}=(3)(3) /(0.0821 \ldots)(318 \mathrm{~K})=0.345 \mathrm{~mol}$.
- $\mathrm{n}_{\text {total }}=0.689+0.345=1.034 \mathrm{~mol}$.
- New volume after mixing, $\mathrm{V}_{\text {total }}=9+3=12 \mathrm{~L}$
- P (after opening the valve $)=n_{t} R T / V_{t}$

$$
\begin{aligned}
& =(1.034 \mathrm{~mol})(0.0821 \ldots)(318 \mathrm{~K}) / 12 \mathrm{~L} \\
& =2.25 \mathrm{~atm} .
\end{aligned}
$$

Section 5.5

Dalton's Law of Partial Pressures

Consider the apparatus below. The left-hand side contains O_{2} and the right-hand side contains $\mathrm{N}_{2} . \mathrm{T}=300 \mathrm{~K}$. Calculate the partial pressures and the pressure of the gas mixture after the valve is opened?

- $\mathrm{n}=\mathrm{PV} / \mathrm{RT}$; $\mathrm{P}_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}} \mathrm{RT} / \mathrm{V}$
- $\mathrm{n}\left(\mathrm{O}_{2}\right)$, left $=\ldots=0.487 \mathrm{~mol}$; $\mathrm{n}\left(\mathrm{N}_{2}\right)$, right $=\ldots=0.304 \mathrm{~mol}$.
- After mixing: $\mathrm{V}=3.0+8.0=11.0 \mathrm{~L}$
- After opening the valve:
- $\mathrm{P}\left(\mathrm{O}_{2}\right)=\ldots=1.09$ atm. ; $\mathrm{P}\left(\mathrm{N}_{2}\right)=\ldots=0.681$ atm.
- $P=1.09+0.681=1.77$ atm.

Section 5.5

Dalton's Law of Partial Pressures

END OF CHAPTER 5

