
### vaccination

Dr.Eman Albataineh, Associate Prof. Immunology College of Medicine, Mu'tah university Immunology, 2<sup>nd</sup> year students

# Properties of a vaccine

- Stimulate the immune system similar to natural infection and cause antibodies and memory T and B cells (Active immunity)
- Differ from the natural infection in that it is not pathogenic (causing disease)
- May not completely prevent but reduce severity and limit timing and recurrence of infection
- Last long enough and has low side effects



Source: GAO analysis of GAO-20-215SP, FDA, HHS, and Pharmaceutical Research and Manufacturers of America (PhRMA) documentation. | GAO-20-583SP

# Causes of fail

- The vaccine may not stimulate the immune response sufficiently because pre-existing antibodies, stress, malnutrition, steroid treatment, immune suppression, parasitism and pregnancy
- In appropriate storing, most of them stored at 2-8 c

# Eradicating infectious disease

- The success of vaccination in eradicating infectious disease is dependent on several properties of the microbes.
  - Vaccines are effective if the infectious agent does not establish latency, (HIV)
  - if it does not undergo much or any antigenic variation, (FLU and HIV)
  - Vaccines are also most effective against infections that are limited to human hosts and do not have animal

- Types
  - Killed or inactivated vaccines
  - Living attenuated
  - Toxoids

#### - Killed or inactivated vaccines

- The bacteria or virus killed while retaining its immunogenicity
- weakened or inactivated virus processed by either conventional technology by passing the virus through animal or human cells leading mutation or by chemical substances (most commonly formaldehyde and heat) that make it less virulent.
- Less effective than live so it is given with adjuvants. Inactivated vaccines tend to produce an immune response that is primarily antibody-mediated. adjuvant selection allows inactivated vaccines to stimulate a more cell-mediated immune response
- Currently, two inactivated vaccines against SARS-CoV-2 were approved by at least one country: Covaxin (Bharat Biotech) and (Sinopharm).
- It is short lasting
- need booster dose
- Examples; polio (given by injection), influenza (IM) and Hep. A and rabies viruses. Pertuses, typhoid and cholera bacteria
- They can be used with immuno-deficient patients
- Safety problems; contamination with endotoxins, vaccine not killed,
- damaged by freeze

#### - Live attenuated

- Alive microbe; by using a technique (reverse genetics) induce certain changes in gene that stop the virus pathogenic activity
- The use of whole attenuated virus resembles the natural infections highly; therefore, the immunity includes all the aspects of the immune response. However, attenuated although very efficient, these vaccines require a longer time to develop, which delays the process.
- Fear of reversal of microbe activity and causing disease mainly in immunocompromized,
- and not for pregnant woman as it may cause fetal damage
- May cause allergy to those allergic to egg as it is prepared in chick embryo
- Can be freezed or refrigerated
- Examples; oral polio vaccine, measles, mumps, rubella, Hep. A viruses. TB bacteria (BCG vaccine), flu virus by nasal spray

### -Toxoids

 Purified toxins (usually exotoxins) that loss its toxicity and retain its immunogenicity as tetanus and diphtheria toxins, given with Polysaccharides (adjuvant) for longer and stronger stimulation

### -Conjugate vaccines

 Polysaccharides- encapsulated bacteria, including Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae type b. Conjugate vaccines aim to overcome important limitations of the isolated capsular PS, which reflect their nature as T-cellindependent antigens, through the recruitment of T-cell help via a conjugated carrier Protein. Memory B cells stimulation

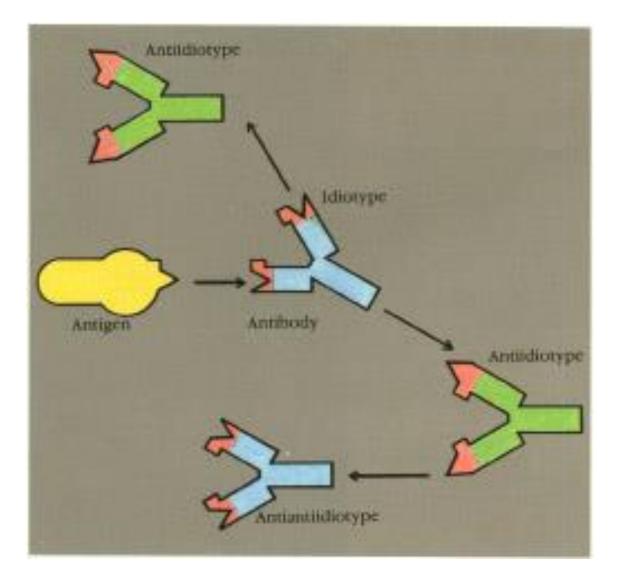
- Subunit vaccine, two types:
- Natural antigen used as in acellular pertussis
- Synthetic antigen; synthesize most immunogenic epitope in the laboratory, and to use the synthetic antigens as vaccines
- It is possible to prepare large quantities of proteins by recombinant DNA technology as In hep. B virus,
- hepatitis B surface antigen (HBsAg) is produced by yeast cells, into which the genetic code has been inserted where it is grown, harvested, and purified.
- A course of three vaccine injections is given, the second injection at least one month after the first dose and the third injection being administered six months after the first dose
- In Corona Virus; Manufacturing S protein. They inserted the gene into a different virus, called a baculovirus, and allowed it to infect moth cells then collect the resulting S protein (Novavax)
- Damaged by freeze

### • Live viral vectors

- DNA encoding the microbial antigen inserted in non cytopathic virus and injected in human, antigen expressed in situ and all the immune system respond to that antigen
- Example
  - vaccinia vector where smallpox vaccine virus is vector for HIV and malaria
  - Canary pox virus is tried to carry HIV vectors
  - (Oxford/AstraZeneca) Replicating viral vectors (Chimpanzee adenovirus:) with COVID-19 DNA that express S protein after entering the host cells with out causing disease ;and Human adenoviruses, Johnson&Jonhson, US

#### • DNA vaccines

Inoculation of plasmid containing complementary DNA (cDNA) injected in human, encoding a protein inside the host antigen leads to humoral and cellmediated immune responses to the protein. Mainly in cancer

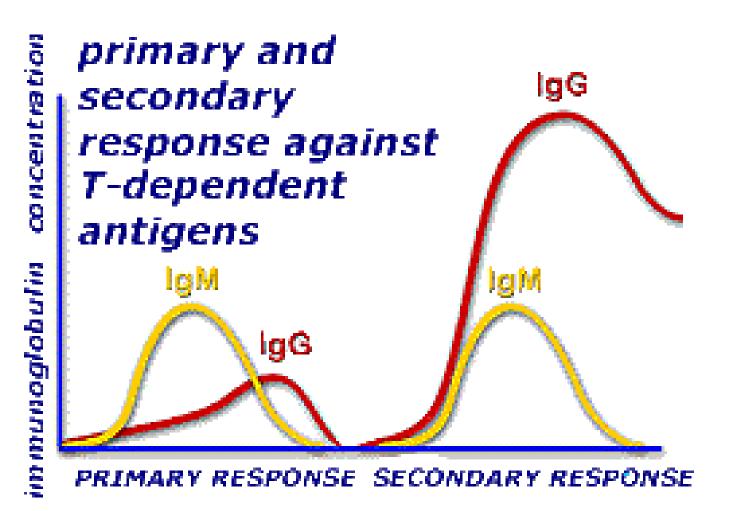

### • Nucleic acids (mRNA)

Injected in human, synthesize the S protein of COVID-19 in side the host, RNA-based; Pfizer and (Moderna), were approved, Can be freeze if storage is for long time

# Anti-idiotype

- Anti-idiotype ; Use mono-clonal antibody that resemble antigen as a vaccine,
- May be used tumor vaccination
- Form antibodies that bind tumor antigens in mice then these antibodies are isolated and injected into another mice forming antibodies against the injectable antibody idiotype"anti-idiotypic". that mimics the original antigens. These antibodies are humanized and combined with an adjuvant and given as a vaccine.

# Anti-idiotype




# Adjuvants

- Adjuvants in immunology are often used to modify or augment the effects of a vaccine by stimulating the immune system to respond to the vaccine more vigorously, and thus providing increased memory cells to a particular disease.
  - lipopolysaccharide (LPS), components of bacterial cell walls acting as prolonged natural infection, example is adjuvant with diphtheria and tetanus toxoid
  - Inorganic salts like aluminum salt. Example diphtheria and tetanus toxoids activate B cells
  - microdroplets of oil called sequalene. Activate phagocytes
  - Cytokines as IL-12, IL2 or costimulatory protein B7

## Antibody Titer test

- The term titer, refers to the strength or concentration of a substance in a solution. Testing vaccine titers is done through a blood test that can identify the presence of antibodies induced by vaccinations and should be IGG. If IGM is high means acute infection.
- If the levels are satisfactory, the person is considered to have "protective antibody IGG" and is considered to be "sufficiently immune" to the disease. You can argue that no further vaccination is necessary at this time. The tests can be ordered for both children and adults and the "protective levels" are the same in all age groups but different between vaccines.



# National program

- Age Vaccine
- Newborn -BCG
- 2 months- DaPT1 IPV1+Hib1+HepB1+ Rota virus 1
- 3 months- DaPT2 IPV2+Hib2+HepB2+OPV+ Rota virus 2
- 4 months- DaPT3 IPV3+Hib3+HepB3+OPV+ Rota virus 3
- 9 months- Measles + OPV
- 12 months-MMR1 + hep A
- 18 months- DPTbooster1 +OPVbooster1 +MMR2+ hep A
- School children who were completely vaccinated
- • 1st Class- OPV +Td + checked for MMR (2 doses)
- • 10th class- Td + checked for MMR (2 doses)

#### How are vaccines made?

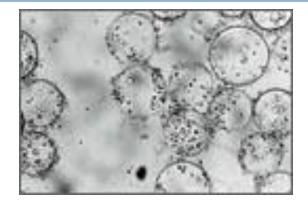
#### **Dead (inactivated) pathogens**

IPV – Inactivated polio vaccine (شلل الاطفال) Pertuses (Whole cell)

#### Live attenuated pathogens (heat sensitive)

MMR – measles, mumps, rubella viruses و الحصبه وابودغيم OPV -- oral polio vaccine – 'Sabin' vaccine TB bacteria (BCG vaccine)-

#### لقاحات مصنعة بطريقة الهندسة الوراثية


#### )Recombinant DNA Technique)

- التهاب الكبد HBV -- Hepititis B surface antigen -

Conjugates (polysaccharides coupled to protein carrier) HiB – Haemophilus influenzae type B الانفلونزا PCV – pneumococcal conjugate vaccine

#### **Toxoids**

الكزاز والخانوق DT---diphtheria, tetanus toxoids



#### **Remember Adjuvants?**

-- increase immune response e.g., aluminum hydroxide School Immunization Schedule -

- School children who were completely vaccinated
- 1 st Class OPV +Td + checked for MMR (2 doses)
  - 10th class Td + checked for MMR (2 doses)
- Lower-case "d and p" denote reduced doses of diphtheria and pertussis used in the a dolescent/adult
- "aP" means acellular pertuses start in jordan in 2010, vaccine contain partial cellular material
  - Tdap for teens and adults after 11 years
  - TDaP for infants and children less than 6 years

# Wait before giving vaccine to

- Children with fever, infection
- Anaphylaxis in previous vaccine (flue vaccine contain eggs)
- Immune compromise

- Vaccine Handling & Storage (Cold Chain)
  - Do not store other pharmaceutical
  - Do not store the vaccine on the door
  - Discard reconstituted vaccines if not used within 6 hours or at the end of immunization session
  - Do not open more than one vial

- Vaccines to certain groups
  - BCG for TB risk,
  - Hep.B; health workers
  - Rabies for animal worker
  - Meningitis, typhoid, cholera and hep.A for traveler
  - Influenza who at risk and elderly
  - Varicella zoster for leukemia children
  - Pneumococcal pneumonia for elderly, immuncompromized and spleen dysfunction and chronic heart or lung diseases

# Passive immunity

- Ready made antibodies are transferred to individual to make short lived immunity till his Abs are formed
  - Natural passive immunity; transfer of antibodies from mother to fetus (IGG) and IGA through breast milk.
    Give protection for 6 months after birth

### passive immunity in emergency

#### Tetanus antitoxin

Tetanus anti-toxin after dirt wound , and has never or not for a long time (10 years) been actively immunized with tetanus toxoid,

### Antivenoms

These antidote (raised in horses or sheep) provide immediate protection to people bitten by a venomous animal (e.g., a rattlesnake)

- Other uses of antibodies
- Some **immune globulin** (IG) is prepared from the gamma globulin fraction of pooled plasma of several thousand blood donors on the assumption that this large pool will contain good levels of antibodies against many common diseases such as
  - X-linked agammaglobulinemia, who are unable to manufacture antibodies because of a mutation in their single gene for Bruton's tyrosine kinase.
  - serum from human is less antigenic but may carry HIV or hep. infection

Other uses of human immune globulin

Intravenous injections of IG have helped patients with such autoimmune disorders as

-immune hemolytic anemia

-immune thrombocytopenic purpura

 The therapeutic effect seems that the C-region portion of the antibody molecules bind to a class of receptors on macrophages, which inhibits them from phagocytosing antibody-coated cells,

# Prevention of hemolytic disease of newborn

- Rh immune globulin (Rhlg) or Rhogam is used to prevent Rh-negative mothers from becoming sensitized to the Rh antigen of their newborn child This phenomenon has led to an extremely effective preventive measure to avoid Rh sensitization. Shortly after each birth (72 hrs) of an Rh+ baby, the mother is given an injection of anti-Rh antibodies. The preparation is called Rh immune globulin (RhIG) or **Rhogam**. These passively acquired antibodies destroy any fetal cells that got into her circulation before they can elicit an active immune response in her.
- may also be used in the treatment of immune thrombocytopenic purpura (ITP).