SOMATIC PAIN æ THERMAL SENSATION By DR. NOURELHUDA MOHAMMED PHYSIOLOGY DEPT. MUTTAR SCHOOL OF MEDICINE

SENSATIONS

- They are divided according to the site of origin into
- 1. Somatic sensations (comes from soma or body)
- 2. Visceral sensations (from viscera). As visceral pain and fullness of the bladder.
- 3. Special sensations (vision, hearing, smell, taste)
- 4. Hypothalamic or organic sensations (thirst-hunger-fear).

SOMATIC SENSATIONS

- further subdivided according to site of receptors into:
- 1. Cutaneous sensations (pain-touch-temperature).
- Deep sensations: as Sense of position, movements, muscle tension, deep pressure, relation of the body parts to each other and relation of the body to the space.
- 3. Mixed sensations (receptors in skin and deep structures):
 - A) STEREOGNOSIS
 - B) VIBRATION SENSE

PAIN SENSATION

characters:

- <u>unpleasant sensation</u> resulting from tissue damage and resulting in protective mechanisms as withdrawal reflex.
- **Pain is a specific type** of sensation and is not due to over stimulation of other sensations.
- The threshold of excitation of pain receptors is much higher than other sensations.
- **Pain is a "pre-potent stimusus"** during pain; any other sensations are inhibited as hunger sensation.

TYPES OF PAIN:

- According to the site, pain is classified to:
- > Cutaneous pain
- Deep pain
- >Visceral pain

pain receptors:

They are specific naked *free nerve endings* (*slowly or even not adapt at all*) called **nociceptors** & subdivided into 3 types according to the **mode of stimulation**.

- 1. Mechanosensitive pain receptors stimulated by excessive mechanical stress as crushing or server trauma.
- 2. Thermosensitive pain receptors stimulated by extremes of either cold or hot i.e., above °45 or below 10 c°.
- 3. Chemosensitive pain receptors which respond to chemical injurious stimuli.

The first two types are connected to (A delta) myelinated fibers. (5-15 meters/sec) while the third type is attached to C-fibers-non myelinated a slowly conducting fibers (0.2 - 2 meters/sec.).

Mechanism of stimulation of pain receptors

Painful stimuli

 tissue damage
 liberation of pain mediators
 stimulation of nociceptors.

 Pain mediators like substance P & Prostaglandins & Potassium & Bradykinin.

1- Cutaneous pain:

- It arises from the skin.
- Usually described as pricking, stitching or burning pain.
- There are 2 types of cutaneous pain: fast & slow pain
- Cutaneous pain is accompanied by *sympathetic reactions* as increase in heart rate and blood pressure, sweating and dilatation of the pupil. Also, *protective* withdrawal reflexes occur in this type of pain.

fast pain

slow pain

- bricking
- •immediate and persist for short time.
- •well localized
- •Conducted by fast myelinated group "A delta" fibers(neo- lat. spinothalamic tract)

Moderate compression on nerve, blocks "A" fibers

 Relay in thalamus then to somatic sensory cortex

- burning
- delayed and persists for long time

Poorly localized

Conducted by "C" un-myelinated fibers(paleolat. spinothalamic tract)

local anesthesia block "C" fibers

•Relay mainly in reticular- formation then to all areas of cerebral cortex.

2- Deep pain

- It arises from deep structures (muscle, ligaments, joints, capsules).
- It is described as dull aching pain and is not well localized.
- Transmitted by "C" fibers.
- Deep pain is accompanied by reflex muscle spasm, bradycardia, drop of the blood pressure, miosis, nausea and even vomiting.
- Important type of deep pain is (intermittent claudication)

occurs in skeletal muscles due to ischemia or atherosclerosis.

REACTIONS TO PAIN:

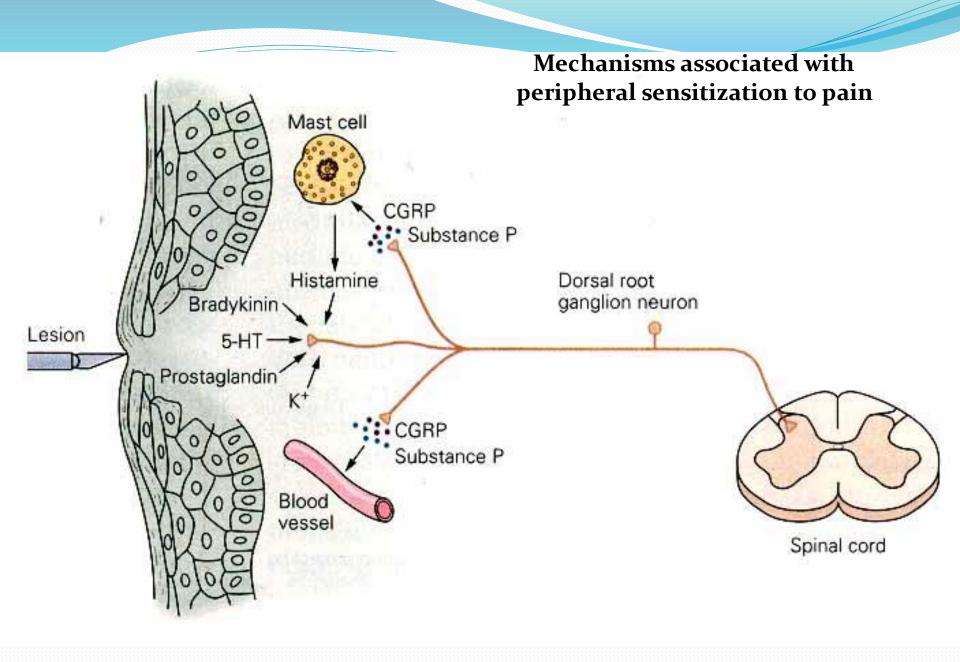
Somatic reflexes:

- protective withdrawal reflex
- reflex spasm of skeletal muscle over diseased viscera.
- The mechanism is that the nerve fibers which carry pain sensations on entering the spinal cord will give collaterals to the anterior horn cells which innervate the surrounding muscles.

2. Emotional reactions:

As impulses carrying pain sensations to sensory cortex send collaterals to the hypothalamus which is one of the higher centers of emotions. This causes emotional reactions like **crying**, **anger** or **depression**. Very severe pain on the other hand may cause even complete loss of consciousness or fainting attacks.

3. Autonomic reactions:


- By impulses that reaches the reticular formation from ascending pain fibers.
- Autonomic reactions include changes in heart rate, respiratory rate, dilation of pupil, sweating and even inhibition of gastrointestinal activity. **Mild pain** as a rule causes **sympathetic stimulation**; while **very severe or visceral pain** stimulates **parasympathetic activity**

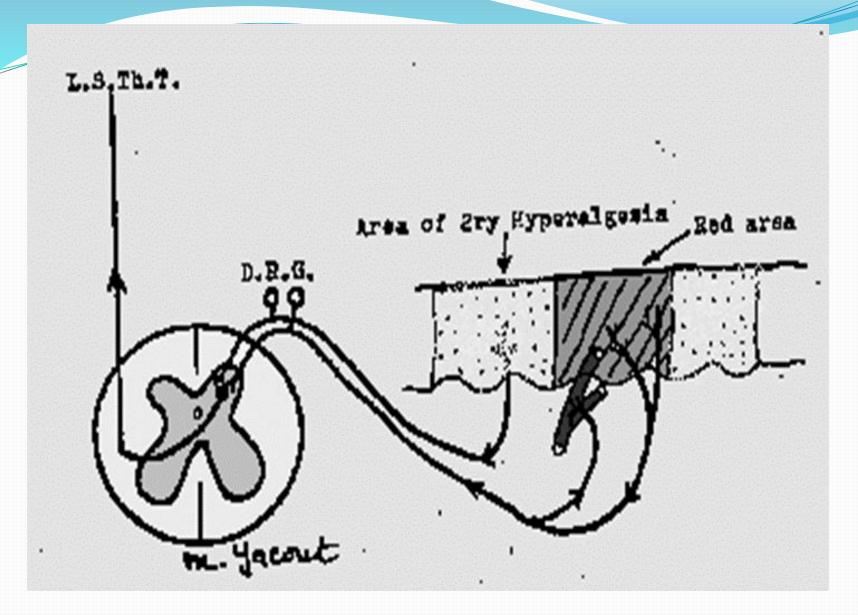
4. HYPERALGESIA:

it is state of pathological skin condition in which non painful stimuli become painful.

Primary hyperalgesia: (At site of the lesion itself)

- It becomes edematous, red, hot and very painful
- The mechanism is by local axon reflex.
- Destroyed tissues release **mediators** that **lower threshold of pain receptor** and cause local vasodilatation and **anti-dromic impulses** that cause arteriolar dilation, edema occurs which cause continuous pressure on the hypersensitive nerve endings causing maintained pain.

Secondary hyperalgesia:


- In the surrounding area of the lesion.
- It appears normal but painful stimulus to it induces severe pain.
- It is explained by **convergence-facilitation theory**

As pain from primary area is carried by sensory nerve that **converge** on a certain neuron in the spinal cord.

This neuron becomes "facilitated" have a lot of chemical transmitter, now if painful sensation reach this

neuron from the surrounding secondary area, it will transmit it to sensory cortex as if it is very painful

sensation.

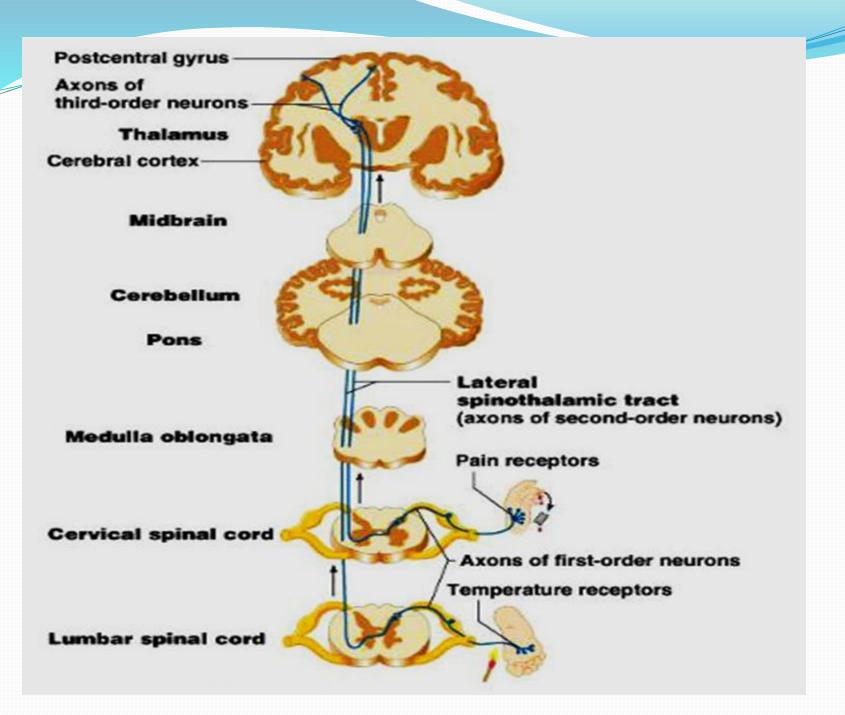
Secondary hyperalgesia

TEMPERATURE SENSATION

- "COLD" SENSATION between 10° and 30c°.
- "WARM" SENSATION between 30° and 45c°.
- **BELOW 10° AND ABOVE 45°** tissue damage begins to occur, and this is described as **pain** sensation.
- AT 0 °C No action potential is recorded from nerves.
- THERMO RECEPTORS ADAPT between 20c° and 40c°

Types of thermoreceptors:

- A. Superficial receptors in skin: they are free nerve endings.
- 1) Warm spots: transmitted by "C" fibers.(Free nerve ending receptor)
- 2) Cold spots: transmitted by " A delta " fibers.
 (Krause's end bulb receptors !)
- B. Deep receptors in hypothalamus: detect body temperature from blood.


• Mode of stimulation of thermoreceptors:

Chemically by change in their metabolic activity.

Paradoxical cold sensation:

On taking hot shower at 45 °C, we 1st feel cold (shivering) followed by warm sensation. Because **cold receptors** are:

- a) 10 Times More numerous & More superficial than warm receptors.
- b) Momentary Brisk discharge at 45°C.
 - •Temperature pathway: Through Lateral spinothalamic tract

Thank You