

Doctor 2021 - رَوح - medicine - MU

Doctor:

Dr. Nashwa Abo- Rayah

DONE BY:

Amatulshafi

Reem Ghabayen

corrected BY:

Hiba Makkawi

0 | P a g e

Drug modifying cholinergic transmission

The main neurotransmitter in the parasympathetic nervous system:

ACETYLCHOLINE

Cholinergic neuron (ACH is neurotransmitter): sites of acetylcholine:

- 1- parasympathetic nerve endings
- 2- some sympathetic nerve fibers (sympathetic cholinergic): preganglionic fibers terminating in the adrenal medulla -Sweat glands: except sweat glands in palms and forehead which receive sympathetic adrenergic nerve fibers.
- 3- autonomic ganglia (both parasympathetic and sympathetic)
- 4- postganglionic fibers of the parasympathetic division, voluntary muscles of the somatic system (neuromuscular junction)
- 5- CNS: many functions especially memory (pathogenesis of Alzheimer disesse)

Ach have a major role in the memory One of the causes of pathogenesis of Alzheimer disease \rightarrow decrease of ach + accumulation of amyloid

Is acetylcholine inhibitory or excitatory neurotransmitter?

• Excitatory: • M1,3,5 receptors: increasing intracellular calcium ion

• Nicotinic receptors: increasing intracellular sodium ion

• Inhibitory: • M2,4: increasing potassium ion efflux. Or Potassium chloride influx

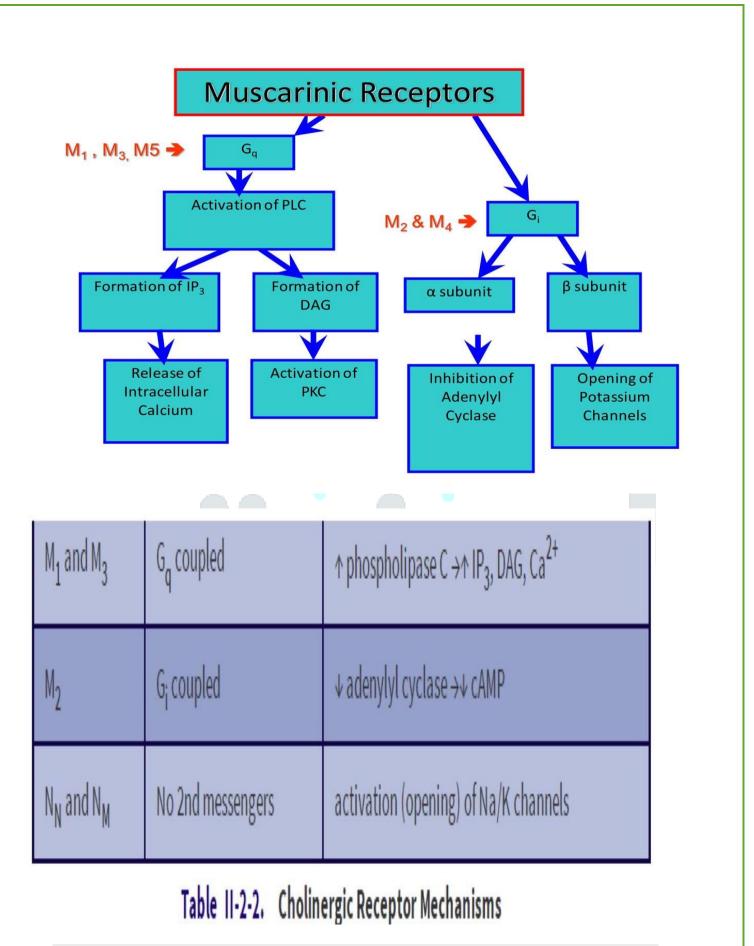
Cholinergic

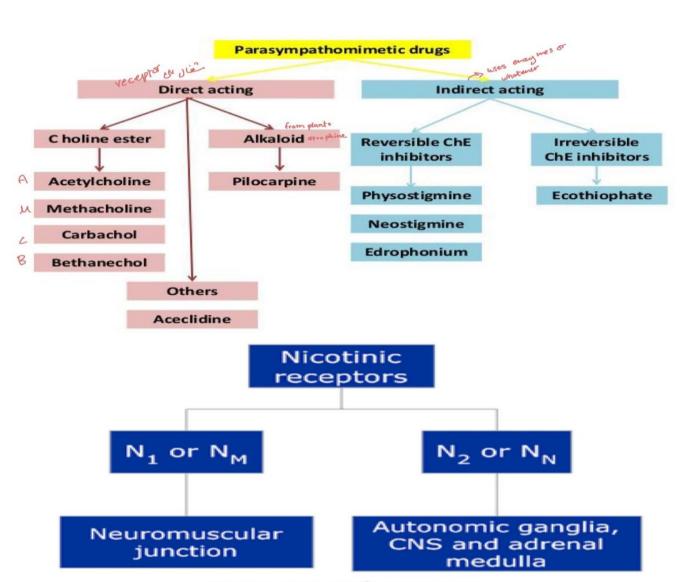
• Muscarinic: peripheral cholinergic receptors

• Nicotinic : central cholinergic receptors

• Nm: muscular: muscle contraction: increasing intracellular Na+.

- Nn: neural: increase intracellular Na+
- 1- CNS stimulation
- 2- increase secretion of suprarenal gland
- 3- stimulation of autonomic ganglia


-parasympathetic agonist rise secretions so when peptic ulcers patients.so then parasympathetic contraindicated when peptic ulcer pationt


-agonist of muscarinic receptors ? ACH

- antagonist of muscarinic receptors ?atropine

Muscarinic receptors

Characteristic	M ₁ (neutral)	M ₂ (cardiac)	M ₃ (glandular/ smooth muscle	\mathbf{M}_4	M ₅
Site	CNS, smooth muscles in Glands: gastric, salivary, endothelium	Heart: atria: SAN Presynaptic	Exocrine glands: gastric, salivary, etc. Smooth muscle: GI tract, eye Blood vessels: endothelium(not innervated???	Presynaptic CNS	CNS
In gastric i	t increase H	ICL, Heart	rete decrease		
physiological action	CNS excitation	Cardiac	Gastric, salivary secretion; GI smooth	Presynaptic inhibition	CNS stimulation
action	Gastric secretion Increase release of EDRF	Control of acetylcholine release (-ve feed back)	muscle contraction; Ocular accomodation; Vasodilatation	of neurotrans mitter release	
Agonist (non- selective)	Gastric secretion Increase release of	Control of acetylcholine release (-ve feed	muscle contraction; Ocular accomodation;	of neurotrans mitter	As M ₁

PharmacologyCorner.com

parasympathomimetics=Cholinomi metics= Parasympathetic stimulants or agonists:

•Drugs that promote cholinergic transmission

•Drugs when administered give an effect similar to stimulation of parasympathetic nervous system

Pharmacological Action of ACh & Cholinomimetics:

A) Muscarinic actions

- Heart: M2 negative chronotropic effect
- Decrease in heart rate (sinus bradycardia): -ve chronotropic.

• Increase atrial conductivity rise the impulse of the circulation to make sure heart wont stop pumping

- Decrease in conductivity in A VN (-ve dromotropic).
- No direct effect on ventricles
- Blood Vessels M3: Vasodilatation of arterioles and venueles .
- Blood pressure: Hypotension

Bronchi: Bronchoconstriction contraindicated with asthmatic
 patient

• Respiratory secretion: increase ciliary movement. Increase secretion

• GIT:

• Stimulation of the Motility of the smooth muscles of wall of GIT

- Sphincters: relaxation
- GIT Secretions: stimulation.
- GENITOURINARY:
- Detrusor muscle: stimulation.
- Sphincter: relaxation

• Trigone: urethral sphincter relaxation. This results in promotion of micturition.

• EYE:

- Twitches of upper eye lid (skeletal muscle) (Nicotinic action).
- Stimulation of constrictor pupillae muscle (miosis).

• Spasm of ciliary muscle muscle (accomodation to near vision).

• Improvement of Aqueous humour drainage (decrease • I.O.P).

Draining of aqueous humor when contraction ciliary muscle works

- Exocrine Glands:
- Stimulation of all exocrine glands.
- Sweat glands ----- Sweating.
- Lacrymal glands ----- tears.
- Salivary glands ------ salivation.
- Bronchial and gastrointestinal gland

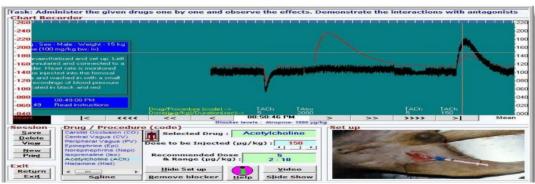
Nicotinic Actions:

- 1-Skeletal muscle: Fasiculation and twitichs •
- 2- Adrenal medulla: Release of adrenaline and noradrenaline.
- 3-Autonomic ganglia:

• 1- Small dose of ACH produces a decrease in blood pressure (hypotension) of short duration. This effect is mediated through stimulation of muscarinic receptors. This hypotensive effect is blocked after injection of atropine.

• 2- Large dose of ACH after injection of atropine when we give atropine it will block the muscarinic receptor, and when ACH is in the body it is supposed to work on the M and N receptors but M is blocked by the atropine so it goes to the nicotinic receptors especially the ones that are found in the sympathetic ganglia and will stimulate it then it will produce noradrenaline then hypertension and vasoconstriction occurs this is called ACh reversal

HOW to reverse the reversal ? by nicotinic blocker


produces an increase instead of a decrease in the blood pressure. This effect is due to:

 a- Stimulation of sympathetic ganglia resulting in the release of adrenaline and noradrenaline.

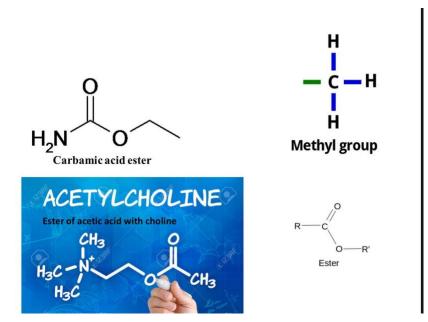
 b- Stimulation of the adrenal medulla resulting in the release of adrenaline and noradrenaline

Acetylcholine reversal

Acetylcholine reversal

- I- Choline esters 1) Acetylcholine (acetic acid + choline).
- II- 2) Methacholine (only muscarinic action no nicotinic and the methyl cleaves off acetylcholine).
- III- 3) Carbachol. ester of carbonic acid
- IV- 4) Bethacholine (bethanechol) (only muscarinic action no nicotinic / methyl derived of carbachol / ch3 + carbachol = bethanechol)

General properties:


•l- Presence of the B- methyl group (methacholine, bethanechol) reduces the potency of these drugs at the nicotinic receptors .

•2- The carbamic acid esters (carbachol,bethanechol) are completely resistant to hydrolysis by cholinesterase enzyme and have longer duration of action.

•3- They are effective orally & parentrally.

•4- They are more selective in their actions.

اسمه ach ? non selective / very short acting

Pharmacological Differences of Choline Esters

	A.Ch.	Methacholine	Carbachol	Bethacholine
Chemistry Absorption	acid with choline		Carbonic acid ester of A.Ch.	Methyl derivative of carbachol.
from GIT		Partial	Complete	Complete
Duration	Very short	Intermediate	Long	Long
Hydrolysis	True Ch E	True Ch E		
	Pseudo Ch E			
Nicotinic action	+++		+++	
Muscarini	c			
action	++++	++++	++++	++++
Administ.	Parentral	Parentral	Locally	Orally
			in Eye	
Uses		CVS	Glaucoma	GIT,
				Urinary T .

Clinical Uses of Cholinesters:

• 1) Postoperative urine retention without obstructions (stone, constriction or enlarged prostate) e.g. bethacholine

• 2) Postoperative paralytic ileus or gastric atony e.g. bethacholine.

• 3) Open angle glaucoma. (carbachol/ if the angle is closed it is not the suitable treatment)

• 4) Alternative with mydriatics to break adhesions between iris & lens. After an infection of eye fibrous tissue would form so then lens stuck with the iris the treatment done by doing opposite movement widening and narrowing

• 5) Treatment of paroxysmal supraventricular tachycardia because they produce M2 mediated bradycardia. (supraventricular not ventricle)

• 6) Diagnosis of intermittent type of pheochromocytoma. Carbachol augments nicotinic receptor mediated adrenaline release from suprarenal gland. Increase in blood pressure by 30 mmHg systolic and to 15 mm Hg diastolic is diagnostic for pheochromocytoma

(phenochromyloma? Benign tumor of adrenal gland \rightarrow hypertension)

(inject carbachol in the patient \rightarrow when I wanna diagnose a patient once they had hypertension then it means that they r pheochromocytoma patient)

• 7) Treatment of xerophthalmia, xerostomia due to autoimmune parotitis and conjunctivitis) (SjOgren syndrome) (pilocarpine &cevimeline)

Choline Esters- Uses Acetylcholine not used because of its transient & nonselective action

- Others rarely used nowadays
- Bethanechol has been used in
 - Postoperative paralytic ileus & gastric atony
 - Postoperative/postpartum nonobstructive urinary retention
 - Neurogenic bladder atony
 - Congenital megacolon, and
 - Gastroesophageal reflux

 Methacholine was occasionally used to terminate paroxysmal supraventricular tachycardia (PSVT)

Contraindications of Cholinesters:

•1) Angina pectoris (due to hypotension and coronary insufficiency). (low blood flow in the heart)

•2) Bronchial asthma (due to bronchoconstriction and increase in bronchial secretions

•3) Hyperthyrodism (due to cardiac arrhythmia).

•4) Peptic ulcer (due to \uparrow gastric motility and secretions

•5) gastrointestinal and urinary hypotonia with organic obstruction

V- Pilocarpine (cholinomimetic alkaloid)

•It is a tertiary amine alkaloid which possesses muscarinic activity.

• Its action is similar to methacholine. It causes initial increase in blood pressure due to adrenaline release from suprarenal gland as a result of stimulation of nicotinic receptors in suprarenal gland followed by decrease due to M receptor mediated vasodilatation.

• When applied locally in the eye produces miosis and fall in intraocular pressure .

• It can be blocked by the muscarinic blocker (atropine) .

•It is resistant to hydrolysis by both pseudo & truecholinesterase long action and could be used for indication

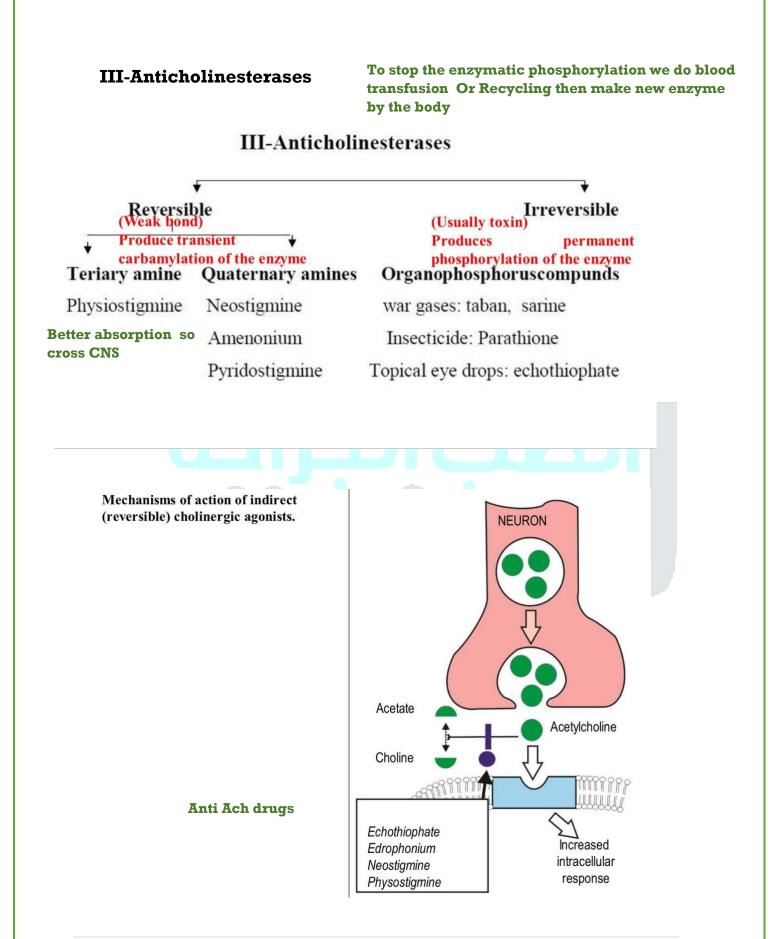
Clinical Uses of Pilocarpine: mostly for eyes

•1) Glaucoma (open angle type) 1 % drops.

•2) Alternative with mydriatics to break adhesions between iris and lens.

•3) It is topically applied to promotion of hair growth in case of alopecia.

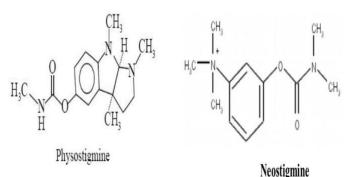
•It acts by increasing blood flow of the scalp by local vasodilatation .


•4) In treatment of atropine over-dosage.

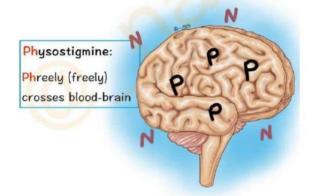
•5) sjugreen syndrome

MUSCARINIC AGONISTS

Drug	Activity	AChE Hydrolysis	Clinical Uses
ACh	M and N	+++	Short half-life—no clinical use
Bethanechol	М		Rx—ileus (postop/neurogenic), urinary retention
Methacholine	M > N	+	Dx—bronchial hyperreactivity
Pilocarpine, cevimeline	М		Rx—xerostomia, glaucoma (pilocarpine)



Natural plant	Synthetic From physiostomin	(100)
reatinal plant	Synthetic From physiostgmin	ie (neo)
Teriary amine	Quaternary amine One charge in	onized
It passes blood brain barrier	It does not pass blood brain barrier	
Complete absorption from GIT	Poor absorption from GIT	
It stimulates cholinergic receptors in CNS Muscarinic	No effect on CNS and nicotinic	
It stimulates muscarinic receptors in inactivation of acctyl choline [n]	directly by inhibition of metabolic nibits both types of the enzyme	
It stimulates nicotinic receptors indirectly by inhibition of acetyl choline metabolism	 They stimulate nicotinic receptors Indirectly by inhibition of metabolic inactivation of acetyl choline Direct stimulation of 	
	nicotinic receptors in skeletal muscles	


with atropine? Neostigmine and physostigmine they have many muscarinic actions but I want them to work in the nicotinic \rightarrow use atropine to block the muscarinic receptor ,by this we reduce the side effect of

	Tecebiot	, by mis we reduce the side effect of
	muscari	nic
	 due to atropine like effect It is used in the treatment of Alzeheimer disease. Improves memory. 	to stimulate salivary secreation in Sjgreen diseaseIt is used in same indications as choline esters
avoid sy side effe	• It is used topically in use to treatment of acute and stemic chronic glaucoma &reversion of the effect of ects, mydriatics and to break werful intraocular adhesions Dose 0.5 % eye drops	Dose 15 mg three times daily orally 0.5 mg intramuscular
	Atropine (1-2 mg IV) is used in the treatment of physiostigmine poisoning to reverse cholinenergic effects of the drug Phenobarbitone may be used to reverse CNS effects	Atropine is used in the treatment of neostigmine poisoning to reverse cholinenergic effects of the drug Artificial respiration and oxygen therapy

Neostigmine Vs Physostigmine

Neostigmine Neo CNS = No CNS penetration

•Pyridostigmine is preferred over neostigmine in treatment of M.gravis?

•1- more selective on skeletal muscle: no need for atropine administration (no sever muscarinic side effects)

•2- longer duration of action: 5-6 hs while neostigmine duration of action is 2 hs.

```
•Edrophonium (tensilon):
```

•More selective than neostigmine and pyridostigmine: no muscarinic side effects. •Very Short duration of action: 5 min. Diagnosis of M.Gravis: (tensilon test): parental edrophonium Improvement of M.gravis symptoms e.g.ptosis. m.gravis is muscle weakness -> paralysis

Ptosis is dropping of the eyelid

Differential diagnosis of Maythinic crisis"low Ach intake" and cholinergic crisis"high amount of ACh": tensilon test: Improvement of symptoms in M.crisis Worsening of symptoms in cholinergic crisis

•Donibezil, rivastigmine: new drugs which are expensive.

•Anticholinestrase activity is only central

•No peripheral effects treatment of Alzihymer's disease: amnesia, dementia, loss of cognetive function due to degeneration of cholinergic neurons and accumulation of beta amyloid protein in CNS insulating neurons from each other.

Drug	Characteristics	Clinical Uses
Edrophonium	Short-acting	Dx—myasthenia gravis
Physostigmine	Tertiary amine (enters CNS)	Rx—glaucoma; antidote in atropine overdose
Neostigmine, pyridostigmine	Quaternary amines (no CNS entry)	Rx—ileus, urinary retention, myasthenia gravis, reversal of nondepolarizing NM blockers
Donepezil, rivastigmine	Lipid-soluble (CNS entry)	Rx—Alzheimer disease
Organophosphates	Lipid-soluble, irreversible inhibitors	Note: used as insecticides (malathion, parathion) and as nerve gas (sarin)

Table 11-2-4. Properties of Indirect-Acting Cholinomimetics

Long - acting (Irreversible) Cholinesterase Inhibitors

- Organophosphates:
- 1- Isoflurophate (DFP) Used in treatment of glucoma.

• 2- Echothiophate Used in treatment of glucoma: eye drops.(duration of action 2 weeks: not prefered)

- 3- Parathion Used as pesticides.
- 4- Malathion Used as pesticides.
- soman, الخردل غاز soman, الخردل غاز soman

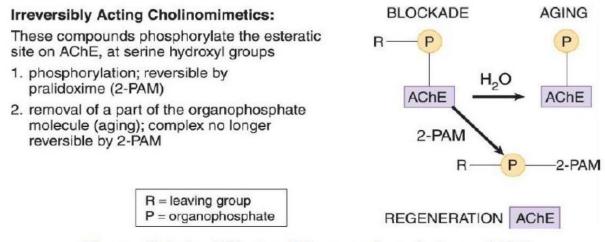


Figure II-2-2. Effects of Organophosphate on AChE

Symptoms and Signs of organophosphate poisoning:

•Rapid absorption even from skin with rapid accumulation in CNS.

•1- Nausea, vomiting, abdominal colic and diarrhea.

•2- Increase of salivation and sweating.

•3- Tightness of the chest with dyspnea.

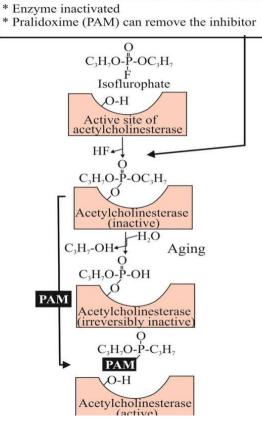
•4- Bradycardia and hypotension.

•5- Muscle twitches and convulsions.

•6- Constricted pupil (miosis).

Death from RS failure

Life saving drug ? atropine IV in this condition before aging that means between 6-12 hours


When aging only treatment is blood transfusion

•7- cause of death respiratory failure: bronchoconstriction, increased bronchial secretions, inhibition of RC, paralysis of resp.muscles. These poisoning are lipid soluble so u must keep an eye on patient to handle when any release of the poison from lipid to the body

CLASSIC CLUE	
AChE inhibitor poisoning: "Dumbbeelss"	
Diarrhea	
Urination	
Miosis	
Bradycardia	
Bronchoconstriction	
Emesis	
Excitation (CNS/muscle)	
Lacrimation	
Salivation	
Sweating	

Covalent modification acetylcholinesterase by isoflurophate; also shown is the reactivation of the enzyme with pralidoxime. PHOSPHORYLATION OF ENZYME * Enzyme inactivated * Pralidoxime (PAM) can remove the inhibitor

Covalent bond takes 12 hours to produce complete inhibition of the enzyme: aging of the enzyme

Management of organophosphate poisoning:

Assessment of patient: ABC A:

air way B: breathing C: circulation: pulse, BP,

• 1- Endotrachial intubation with artificial respiration.

• 2- Atropine 2 mg I.V. repeated/5 min. until signs of atropinization appears. (dry mouth, dilated pupil and tachycardia, increase BP) FOLLOW UP FOR 24-48 hs. WHY? Life saving drug

• 3- diazepam (10 mg IV) preferred to barbiturates to treat convulsions.

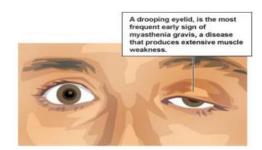
• 4- Fresh blood transfusion.

• 5- Oximes (PAM, pralidoxime): CHOLINESTRASE REACTIVATORS: DEPHOSPHORYLATION: break the covalent bond. • The treatment with Oximes should be within hours (2gm in 5% Dextrose 100 ml I. V. drip in 20 min.). Oximes produce their effect through:-

• a) Direct reaction with enzyme.

• b) Direct reaction with inhibited enzyme.

• c) Reactivation of inhibited enzyme.


Myasthenia gravis

•It is an autoimmune disease (genetic) in which there is an antibody to the A.Ch. nicotinic Nm receptor system which impairs the responsiveness of the neuromuscular junction resulting in weakness and rapid fatigability of skeletal muscles.

•More proximal muscles are affected: ptosis, weak mastication muscles, drop of mouth angle, shoulder girdle.

•Bulbar muscles when affected: patient dies.

Manifestations of M.gravis

Smoothing out of forehead Eyebrow droop Drooping of corner of mouth

• Causes:

- 1- Curare like substance circulating in blood.
- 2- Abnormal motor end plate poorly sensitive to A.Ch.
- 3- Decrease of ACh Concentration at nicotinic receptors at motor end plate.
- 4- Increase of ACh cholinesterase activity.
- 5- Autoimmune disease affects motor end plate

• Diagnosis

• Neostigmine 1.5 mg + 0.6 mg atropine (to block muscarinic effect) are injected IM this improves muscle weakness.

• Edrophonium 2 mg IV if the first dose is without effect 8 mg are injected after 45 seconds.

Treatment:

•1- Anticholinesterases: e.g. neostigmine, pyridostigmine and ambenonium (Ambenonium was withdrawn from the market in the United States in 2010).why? •Atropine, belladonna, ganglionic blocking agents (eg, mecamylamine), quinine, or quinidine decrease effectiveness of ambenonium.

•Cholinergic agents (eg, guanidine) because the risk of side effects may be increased

•N.B. Excessive dosage of an anticholinesterase can lead to prolonged stimulation of nicotinic receptors (Nm) by ACh resulting in a depolarizing blockade of the neuromuscular junction. Therefore, muscle weakness in myasthenia gravis can be the result of either inadequate or excessive dosage of anticholinesterases (cholinergic crisis)

•• An antimuscarinic agent is necessary to block the muscarinic effect of ACh especially if large doses of anticholinesterase are given e. g atropine or propantheline.

• 2- Immunosuppressive drugs:

• Prednisolone, azathioprine and cyclosporine.

• 3- Thymectomy should be considered in myasthenia associated with a thymoma (tumor of the thymus gland)

• 4- Plasmapharesis to remove circulating antibodies directed against nicotinic receptors.

• 5- Artificial respiration in acute crises.

• 6- Potassium chloride because it promote depolarization of skeletal muscles.

• 7- Ephedrine due to its anti-fatigue effect via B2 mediated increase glycogenolysis and muscle blood flow and muscle potassium

﴿ وَمَا يُلَقَّاهَا إِلَّا الَّذِينَ صَبَرُوا وَمَا يُلَقَّاهَا إِلَّا ذُو حَظٍّ عَظِيمٍ﴾ المنازل الرفيعة لا تخلق من العدم فالهمة الهمة حتى تصل القمة