Cell division: MITOSIS

Dr AMAL ALBTOOSH

3 Types of Cell Division

Type of Cell Division	Type of Cells it occurs in	Function
Binary Fission	Prokaryotes	Asexual Reproduction
Mitosis	Eukaryotes	Asexual Reproduction Growth of Individual Repair/Maintenance of Tissues
Meiosis	Eukaryotes	Sexual Reproduction

The Cell Cycle

\square The cell cycle is the period from the beginning of one division to the beginning of the next.

- The cell cycle consists of 2 major phases:
\square Interphase (cell growth and copying of chromosomes in preparation for cell division
$\checkmark \mathrm{G}_{1}$ - primary growth phase
$\checkmark S$ - synthesis; DNA replicated
$\checkmark \mathrm{G}_{2}$ - secondary growth phase
collectively these 3 stages are called interphase
\square Mitotic (M) phase

The Cell Cycle and the Checkpoints

1. Cell Growth Checkpoint

- Occurs toward the end of growth phase 1 (G1).
- Checks whether the cell is big enough and has made the proper proteins for the synthesis phase.
- If not, the cell goes through a resting period (G0) until it is ready to divide.

2. DNA Synthesis Checkpoint

- Occurs during the synthesis phase (S).
- Checks whether DNA has been replicated correctly.
- If so, the cell continues on to mitosis (M).

3. Mitosis Checkpoint

- Occurs during the mitosis phase (M).
- Checks whether mitosis is complete.
- If so, the cell divides, and the cycle repeats.

Mitosis

\checkmark Division of the nucleus called karyokinesis
\checkmark Division of the cytoplasm called Cytokinesis

Prophase

Chromatin condenses into chromosomes

Nucleolus disappears

Metaphase

Metaphase

Chromosomes line up along metaphase plate (imaginary plane)

The best stage at which the total number of chromosomes can be counted in any species is metaphase

3-Anaphase

- Each centromere splits making two chromatids free

Anaphase

chromosomes move towards opposite poles of the cell

- Each chromatid moves toward a pole
- Cell begins to elongate, caused by microtubules not associated with the kinetochore

Occurs rapidly
\checkmark Sister chromatids are pulled apart to
opposite poles of the cell by kinetochore
fibers

4. Telophase

- Formation of nuclear membrane and nucleolus

Short and thick chromosomes begin to elongate to form long and thin chromatin

- Formation of the cleavage furrow - a shallow groove in the cell near the old metaphase plate
\square Formation of cell plate starts at telophase
- Cytokinesis $=$ division of the cytoplasm
\checkmark Sister chromatids at opposite poles
\checkmark Spindle disassembles
\checkmark Nuclear envelope forms around each set of sis $_{\text {Nucleus }}$
\checkmark Nucleolus reappears
\checkmark CYTOKINESIS occurs
\checkmark Chromosomes reappear as chromatin

Comparison of Anaphase \& Telophase

Cytokinesis

\checkmark Means division of the cytoplasm

\checkmark Division of cell into two, identical halves called daughter cells
\checkmark cleavage furrow forms to split cell

- Nuclear membranes form around the two new sets of chromosomes.
- The spindle fiber disappears.
- Chromosomes start to uncoil (chromatin) and become less visible.
- Cell starts to make a groove (furrow) in the middle to eventually split into two identical cells.
\square If cells undergo mitosis and not cytokinesis, this will result in cell with two nuclei.

The Key Roles of Cell Division

- The ability of organisms to produce more of their own kind best distinguishes living things from nonliving matter
- The continuity of life is based on the reproduction of cells, or cell division
- In unicellular organisms, division of one cell reproduces the entire organism
- Multicellular organisms depend on cell division for
- Development from a fertilized cell
- Growth
- Repair
- Cell division is an integral part of the cell cycle, the life of a cell from formation to its own division
- Most cell division results in genetically identical daughter cells
- Most cell division results in daughter cells with identical genetic information, DNA
- The exception is meiosis, a special type of division that can produce sperm and egg cells

Cell-division- Meiosis

Comparison of Divisions

Mitosis

Meiosis

Number of divisions	1	2
Number of daughter cells	2	4
Genetically identical?	Yes	No
Chromosome	Same as parent	Half of parent
Where	Somatic cells	Cerm cells
When	Throughout life	At sexual
Role	Growth and repair	Sexual reproduction

Prophase I

- Longest and most complex phase
- 90% of the meiotic process is spent in Prophase I
- This stage is composed of $\mathbf{5}$ stages:

1- Leptotene(thin threads)
2- Zygotene (Homologus bivalent = synapsis)
3- Pachytene (condense short \&thick)
4- Diplotene (crossing -over)
5- Diakinesis + (nuclear memb \& nucleoles disappear)

- Chromosomes condense.
- Synapsis occurs: homologous chromosomes come together to form a tetrad.
- Tetrad is two chromosomes or four chromatids

Tetrads Form in Prophase I

Crossing-Over

Homologous Synapsis: Pairing of

chromosomes in a tetrad
cross over each other

Pieces of chromosomes or
genes are exchanged

Produces Genetic

 recombination in the offspring
Metaphase II

- The chromosomes are positioned on the metaphase plate in a mitosis-like fashion
- Chromosomes align
- along equator of cell

Anaphase II

- The centromeres of sister chromatids finally separate
- The sister chromatids of each
 pair move toward opposite poles
- Sister chromatids separate and move to opposite poles.

Telophase II and Cytokinesis

- Nuclei form at opposite poles of the cell and cytokinesis occurs
- After completion of cytokinesis there are four daughter cells
- All are haploid (n)
- Nuclear envelope assembles.
- Chromosomes decondense.
- Spindle disappears.

- Cytokinesis divides cell into two.

Results of Meiosis

Gametes (egg \& sperm) form

Four haploid cells with one copy of each chromosome

Different combinations for different genes along the chromosome

Genetic Diversity

\square Meiosis increases genetic diversity.
\square Genetic Variation Among Offspring
\square Two points of genetic recombination.
$>$ Crossing-over of non sister chromatids—Prophase 1
$>$ Independent assortment of

Independent assortment
homologous chromosomes during Metaphase 1

