Cell division: MITOSIS

Dr AMAL ALBTOOSH

3 Types of Cell Division

Type of Cell Division	Type of Cells it occurs in	Function
Binary Fission	Prokaryotes	Asexual Reproduction
Mitosis	Eukaryotes	Asexual Reproduction Growth of Individual Repair/Maintenance of Tissues
Meiosis	Eukaryotes	Sexual Reproduction

The Cell Cycle

- The cell cycle is the period from the beginning of one division to the beginning of the next.
- The cell cycle consists of 2 major phases:
 <u>Interphase</u> (cell growth and copying of chromosomes in preparation for cell division
- \checkmark **G**₁ primary growth phase
- \checkmark S synthesis; DNA replicated
- \checkmark G₂ secondary growth phase

collectively these **3 stages** are **called interphase**

Mitotic (M) phase

The Cell Cycle and the Checkpoints

1. Cell Growth Checkpoint

- Occurs toward the end of growth phase 1 (G1).
- Checks whether the cell is big enough and has made the proper proteins for the synthesis phase.
- If not, the cell goes through a resting period (G0) until it is ready to divide.

2. DNA Synthesis Checkpoint

- Occurs during the synthesis phase (S).
- Checks whether DNA has been replicated correctly.
- If so, the cell continues on to mitosis (M).

3. Mitosis Checkpoint

- Occurs during the mitosis phase (M).
- Checks whether mitosis is complete.
- If so, the cell divides, and the cycle repeats.

Mitosis

- ✓ Division of the nucleus
- called karyokinesis
- ✓ Division of the cytoplasm
- called <u>Cytokinesis</u>

Prophase

Chromatin condenses into chromosomes Nucleolus disappears

Metaphase

The best stage at which the total number of chromosomes can be **counted** in any species is **metaphase**

- Each centromere splits making two chromatids free

- Each chromatid moves toward a pole
- Cell begins to elongate, caused by microtubules not associated with the kinetochore

Occurs rapidly

✓ Sister chromatids are pulled apart to

opposite poles of the cell by kinetochore

fibers

4. Telophase

- Formation of nuclear membrane and nucleolus
- Short and thick chromosomes begin to elongate to form long and thin chromatin
- □ Formation of the <u>cleavage</u> <u>furrow</u> a shallow groove in the cell near the old metaphase plate
- □ Formation of cell plate starts at telophase
- **Cytokinesis** = division of the cytoplasm
 - \checkmark Sister chromatids at opposite poles
 - ✓ Spindle disassembles
 - ✓ Nuclear envelope forms around each set of sis_{Nucleus}
 - ✓ Nucleolus reappears
 - ✓CYTOKINESIS occurs
 - \checkmark Chromosomes reappear as chromatin

Comparison of Anaphase & Telophase

- \checkmark Means division of the cytoplasm
- ✓ Division of cell into two, identical halves called daughter cells
- ✓ cleavage furrow forms to split cell
- Nuclear membranes form around the two new sets of chromosomes.
- The spindle fiber disappears.
- Chromosomes start to uncoil (chromatin) and become less visible.
- Cell starts to make a groove (furrow) in the middle to eventually split into two identical cells.
- □ If cells undergo mitosis and not cytokinesis, this will result in cell with two nuclei.

The Key Roles of Cell Division

- The ability of organisms to produce more of their own kind best distinguishes living things from nonliving matter
- The continuity of life is based on the reproduction of cells, or cell division
- In unicellular organisms, division of one cell reproduces the entire organism
- Multicellular organisms depend on cell division for
 - Development from a fertilized cell
 - Growth
 - Repair
- Cell division is an integral part of the **cell cycle**, the life of a cell from formation to its own division
- Most cell division results in genetically identical daughter cells
- Most cell division results in daughter cells with identical genetic information, DNA
- The exception is meiosis, a special type of division that can produce sperm and egg cells

Cell-division- Meiosis

Comparison of Divisions Mitosis Meiosis 2 Number of 1 divisions Number of 2 4 daughter cells Genetically No Yes identical? Same as parent Half of parent Chromosome Somatic cells **Germ cells** Where At sexual **Throughout life** When maturity Sexual **Growth and repair** Role reproduction

Prophase I

- Longest and most complex phase
- 90% of the meiotic process is spent in Prophase I
- This stage is composed of **5 stages**:
- 1- Leptotene(thin threads)
- 2- Zygotene (Homologus bivalent = synapsis)
- 3- Pachytene (condense short & thick)
- 4- Diplotene (crossing –over)
- 5- Diakinesis + (nuclear memb & nucleoles disappear)
- Chromosomes condense.
- **Synapsis** occurs: homologous chromosomes come together to form a tetrad.
- **Tetrad** is two chromosomes or four chromatids

Tetrads Form in Prophase I

Crossing-Over

Metaphase II

- The chromosomes are positioned on the metaphase plate in a mitosis-like fashion
- Chromosomes align
- along equator of cell.

Anaphase II

- The centromeres of sister chromatids finally separate
- The sister chromatids of each pair move toward opposite poles
- Sister chromatids separate and move to opposite poles.

Telophase II and Cytokinesis Nuclei form at opposite poles of the cell and cytokinesis occurs

• After completion of cytokinesis there are four daughter cells

– All are haploid (n)

- Nuclear envelope assembles.
- Chromosomes decondense.
- Spindle disappears.
- Cytokinesis divides cell into two.

Results of Meiosis

Gametes (egg & sperm) form

Four haploid cells with one copy of each chromosome

Different combinations for different genes along the chromosome

Genetic Diversity

☐ Meiosis increases genetic diversity.

- Genetic Variation Among Offspring
- Two points of genetic recombination.
- Crossing-over of non sister

chromatids—Prophase 1

Independent assortment of

homologous chromosomes during

Metaphase 1

Independent assortment