Action potential

BY Dr. Nour A. Mohammed Mut'ah school of medicine

Definition

it is a **transient** change in the resting membrane potential as a result of application of a **threshold stimulus**.

Application of an adequate electric stimulus to the nerve fiber is followed by:

- 1) Stimulus artifact $\sqrt{}$
- 2) Latent period $\sqrt{}$
- 3) Spike potential
 - a) Depolarization
 - b) Repolarization
 - Rapid Repolarization
 - Slow Repolarization
 - Hyperpolarization

Stages of action potential:

(1) Stimulus artifact

- It is a short irregular deflection of the base line due to stimulus application.
- This is due to current leakage from the stimulating electrode to the recording electrode

(indicates beginning of stimulation).

Stimulus Artefact

(2) Latent period

- It represents the time that the nerve impulse (**response**) takes to travel from the stimulating to recording electrode.
- It indicates the rate of conduction in the axon.

(3) Depolarization

There is a rapid loss or (reversal) of polarity of the membrane. It is recorded as a rise of membrane potential in the positive direction.

At first, there is a slow depolarization of 25 mV (RMP changes from –90 to –65 mV)

depolarisation moves along the axon

Depolarization steps:

- At -65 mV (*Firing level*), the depolarization occurs rapidly till the potential reaches zero mV (no deference between inside and outside the cell membrane).
- Then, the inside becomes
 positive to the outside of the
 membrane i.e. reversal of
 polarity (overshoot) till +35 mV.

So, the magnitude of the depolarization phase equals 125 mV (from -90 to +35 mV).

Cause of depolarization:

- ✓ The stimulus opens some Na+ channels allowing Na⁺ to enter the cell.
- If the Na+ influx achieves threshold potential (the firing level) then additional Na+ gates open and depolarization will proceed rapidly.
- The flow of Na+ will cause more Na+ channels to open. (+ve feedback mechanism).

Changes in voltage-gated fast Na+ channels and Na+ permeability during action potential:

- Outer gate (activation gate): opens at the start of depolarization causing Na+ influx.
- Inner gate (inactivation gate): then closes, preventing further Na+ influx and causing Na+ channel inactivation.

> During rest: the activation gate is closed & the inactivation gate is opened → no Na+ permeability.
 > During activation: change of membrane potential by 25 mV (from -90 to -65 mV) → the activation gate opens and Na+ permeability reaches maximum till the potential of +35 mV. Then the inactivation gate closes.

(4) Repolarization

It is the return of the membrane potential to the resting state (from +35 to -90 mV).

1. Rapid repolarization:

- During which the membrane restores 70% of its resting condition.
- Cause:
- a) Inactivation of voltage gated Na+ channels so, Na+ influx stopped.
- b) Activation of voltage gated K+ channels so, K+ outflux increased.

Changes in voltage-gated K+ channels during action potential:

K+ channel has a single gate located on the inside of the membrane.

+ **During rest:** the gate is closed.

+ **During activation:** depolarization \rightarrow slow opening of K+ channels which coincides to the closure of Na+ gates \rightarrow repolarization.

Note that:

K+ gates are stimulated by the same stimulus that stimulates Na+ channels but K+ channel are slow (take more time to open and close).

(2) Slow repolarization

After 70% of repolarization, the rate of repolarization becomes slow.

(3) hyperpolarization

After reaching the RMP, there is an overshooting of about 1-2 mV hyperpolarization, then the membranes returns to normal **RMP**.

Cause: Delayed K+ channels closure
→ more K+ efflux
→ more hyperpolarization.

Finally, *Na*+- *K*+*pump* helps to restore the normal ionic distribution of the RMP i.e., maintenance of Na+ (extra cellular) and K+ (intracellular)

Properties of action potential:

- 1) **Caused by threshold** stimulus (or suprathreshold)
- 2) <u>Caused by ionic changes.</u>
- 3) <u>Conducted</u> (propagates) in both directions.
- 4) <u>Constant duration</u>.
- 5) Obeys <u>A</u>ll or none law \Rightarrow <u>can't</u> be graded (constant amplitude).
- 6) Has <u>Absolute Refractory Period</u> \Rightarrow <u>can't be summated</u>.

Excitability changes:

At first, there is increase in excitability till the firing level then the following changes occur:

1- Absolute refractory period:

No response to any stimulus (loss of excitability).

 Coincides with depolarization from the firing level till the first 1/3 of rapid repolarization. 2- Relative refractory period:

- Stronger stimulus \rightarrow response (low excitability).

- Coincides with lower 2/3 of rapid repolarization.

3- Supernormal phase:

- Weak stimulus \rightarrow response (high excitability).

Coincides with the Slow repolarization

 During it, the membrane is partially depolarized and has low threshold for firing level.

