Action potential

BY

Dr. Nour A. Mohammed
Mut'ah school of medicine

Definition

it is a transient change in the resting membrane potential as a result of application of a threshold stimulus.

depolarisation moves along the axon

Application of an adequate electric stimulus to the nerve fiber is followed by:

1) Stimulus artifact $\sqrt{ }$
2) Latent period V
3) Spike potential
a) Depolarization
b) Repolarization

- Rapid Repolarization
- Slow Repolarization
- Hyperpolarization

Stages of action potential:

(1) Stimulus artifact

- It is a short irregular deflection of the base line due to stimulus application.
- This is due to current leakage from the stimulating electrode to the recording electrode (indicates beginning of stimulation).

MOTOR NERVE CONOUCTION STUDY

(2) Latent period

- It represents the time that the nerve impulse (response) takes to travel from the stimulating to recording electrode.
- It indicates the rate of conduction in the axon.

Speed of conduction $=\frac{\text { Distance between electrodes }}{\text { Latent period }}$

(3) Depolarization

There is a rapid loss or (reversal) of polarity of the membrane.
It is recorded as a rise of membrane potential in the positive direction.

At first, there is a slow depolarization of 25 mV (RMP changes from -90 to -65 mV)

depolarisation moves along the axon

Depolarization steps:

So, the magnitude of the depolarization phase equals 125 mV (from -90 to +35 mV).

Cause of depolarization:

\checkmark The stimulus opens some $\mathrm{Na}+$ channels allowing Na^{+}to enter the cell.
\checkmark If the $\mathrm{Na}+$ influx achieves threshold potential (the firing level) then additional $\mathrm{Na}+$ gates open and depolarization will proceed rapidly.
The flow of Na+ will cause more $\mathrm{Na}+$ channels to open. (+ve feedback mechanism).

Changes in voltage-gated fast $\mathrm{Na}+$ channels and $\mathrm{Na}+$ permeability during action potential:
> Outer gate (activation gate): opens at the start of depolarization causing Na+ influx.
> Inner gate (inactivation gate): then closes, preventing further $\mathrm{Na}+$ influx and causing $\mathrm{Na}+$ channel inactivation.

> During rest: the activation gate is closed \& the inactivation gate is opened \rightarrow no Na+ permeability.
> During activation: change of membrane potential by 25 mV (from -90 to -65 mV) \rightarrow the activation gate opens and $\mathrm{Na}+$ permeability reaches maximum till the potential of +35 mV . Then the inactivation gate closes.

(4) Repolarization

It is the return of the membrane potential to the resting state (from +35 to -90 mV).

It occurs in $\mathbf{3}$ steps:

1. Rapid repolarization
2. Slow repolarization
3. Hyperpolarization.

1. Rapid repolarization:

- During which the membrane restores 70\% of its resting condition.
- Cause:
- a) Inactivation of voltage gated $\mathrm{Na}+$ channels so, $\mathrm{Na}+$ influx stopped.
-b) Activation of voltage gated $\mathrm{K}+$ channels so, $\mathrm{K}+$ outflux increased.

Changes in voltage-gated $K+$ channels during action potential:

$\mathrm{K}+$ channel has a single gate located on the inside of the membrane.

+ During rest: the gate is closed.
+ During activation: depolarization \rightarrow slow opening of K+ channels which coincides to the closure of $\mathrm{Na}+$ gates \rightarrow repolarization.

Resting

Note that:

(2) Slow repolarization

After 70\% of repolarization, the rate of repolarization becomes slow.

Cause:

Decrease in $\mathrm{K}+$ gradient \rightarrow slow $\mathrm{K}+$ efflux \rightarrow delayed repolarization.

(3) hyperpolarization

After reaching the RMP, there is an overshooting of about $\mathbf{1 - 2} \mathbf{~ m V}$ hyperpolarization, then the membranes returns to normal RMP.

Cause: Delayed K+ channels closure \rightarrow more $\mathrm{K}+$ efflux
\rightarrow more hyperpolarization.

- Finally, $\mathbf{N a}_{+}-\mathbf{K}_{+} \boldsymbol{p u m p}$ helps to restore the normal ionic distribution of the RMP i.e., maintenance of $\mathrm{Na}+$ (extra cellular) and K_{+}(intracellular)

Properties of action potential:

1) Caused by thressold stimulus (rspapatiestobld)
2) Caused by ionic changes.
3) Conducted (propagites) in both directions.
4) Constant duration.
5) Obers All or rone law I cannt be graded (constant amplitude).
6) Has Absolute Refriactory Perioda) cant be cummated.

Excitability changes:

At first, there is increase in excitability till the firing level then the following changes occur:

1- Absolute refractory period:

- No response to any stimulus (loss of excitability).
-Coincides with depolarization from the firing level till the first 1/3 of rapid repolarization.

2-Relative refractory period:

- Stronger stimulus \rightarrow response (low excitability).
- Coincides with lower $2 / 3$ of rapid repolarization.

Supernormal phase:

- Weak stimulus \rightarrow response
(high excitability).
- Coincides with the Slow repolarization
- During it, the membrane is partially depolarized and has low threshold for firing level.

4- Subnormal phase:

-Stronger stimulus \rightarrow response
(low excitability).

- Coincides with the hyperpolarization
- During it, the membrane is hyperpolarized with increase threshold for firing level and difficult stimulation.

Thank you

