

Last edited: 9/11/2021

Affinite

Normally 11.5- 14.5%

1.Hb to 02

Medical Editor: Dr. Ana Guerra

Table 1-2. Types of anemia according to their morphology Il abPadia nati

	Microcytic hypochromic	Normocytic normochromic	Macrocytic		
MCV	<80 fl	80-100 fl	> <i>10</i> 0 fl		
MCH	<27 pg	>27 pg	↑/ N		
MCHC	<32%-low	N	N		
E.g.	 Iron deficiency Thalassemia Sideroblastic anemia Chronic diseases Lead poisoning 	 Hemolytic anemias Acute blood loss Bone marrow failure Renal diseases Chronic D. 	 Vit B12 deficiency Folic acid deficiency Aplastic anemia 		

(C) COMMON CLINICAL PRESENTATION

→ Main symptoms are due to cardiovascular system adaptation

→ Increased stroke volume, tachycardia and changes

- in the Hb O2 dissociation curve shift to Right \rightarrow Weakness and fatigue. Release
- \rightarrow Dizziness and headaches.
- \rightarrow Pallor of face, tongue and conjunctives.
- \rightarrow Shortness of breath.

(D) DIFFERENTIAL DIAGNOSIS STUDIES

(i) <u>Red cell distribution width (RDW) - Variation of Red cell uslame</u>

 Helps in the differential diagnosis of iron deficiency anemia and thalassemia.

(ii) Serum iron

• Helps differentiating between hemochromatosis and hemosiderosis. Prekel

(iii) Transferrin

· Cand help in diagnosis of anemia of chronic disease and differential diagnose with iron deficiency anemia.

(iv) Transferrin saturation

- Cand help in diagnosis of anemia of chronic disease and differential diagnose with iron deficiency anemia.
 - (v) Ferritin >> Apo-ferritin + Fet2
- It correlates with total body iron stores.

(vi) Total Iron binding capacity (TIBC)

- Always done along serum iron levels.
 - (vii) Peripheral blood smear -> We see it on Microscope
- Informs abnormalities of the RBC shape, size and inclusions.

(viii) Bone marrow examination

• Helpful study when there are signs and symptoms of aplastic anemia.

(ix) Coombs test

 Very useful to differentiate between hereditary spherocytosis and autoimmune hemolytic anemia.

OUTLINE

I) OVERVIEW II) IRON DEFICIENCY ANEMIA **IIÍ) PERNICIOUS ANEMIA** IV) HEREDITARY SPHEROCYTOSIS V) G6PDH **VÍ) SICKLE CELL ANEMIA** VII) HEMORRAGIC ANEMIA VIIÍ) APLASTIC IX) THALASSEMIA X) APPENDIX XI) REVIEW QUESTIONS XII) REFERENCES

I) OVERVIEW

(A) **DEFINITION**

Anemia is defined as a low carrying capacity condition due to decrease in hemoglobin concentration.

 \rightarrow The diagnostic criteria is based on low hemoglobin (Hb), low hematocrit (Hct), or decreased RBC count.

Table 1. Diagnostic criteria for anemia in males and females [LabPedia.net]

RBCs values	Male	Female	
Hemoglobin	14-17 g/dL	12-15 g/dL	
Hct % Hematocrit PCV Packed cell volume	40-52% Normally -> 45%	36-48% 40%	
MCV Mean cell volume	80-100 fL	80-100 fL	
MCH Mean cell hemoglobin	27-34 pg	27-34 pg	
MCHC % Mean cell hemoglobin concentration	33.%	30-37%	
Reticulocytes count	0.5-1.5%	0.5-1.5%	

(B) CLASSIFICATION

There are several types of classifications for anemia, but two of the widely accepted are based on:

- \rightarrow The etiology
- \rightarrow The morphology

(i) Classification based on etiology

- 1) Increased RBC's destruction (hemolysis).
- 2) Increased blood loss, which may be acute or chronic.
- Defective maturation of erythropoiesis.

(ii) Morphological classification

1) Normochromic and normocytic anemia (normal MCV and MCHC).

2) Hypochromic and microcytic anemia (low MCV, MHC and MCHC).

3) Normochromic and macrocytic (high MCV, normal or increase MHC and normal MCHC).

- → MCV determines size of erythrocytes.
- → MHC and MCHC determine color.

3 on Blood Smear

II) IRON DEFICIENCY ANEMA

(1) Etiology

- Excessive bleeding.
- · Menorrhagia. Heavy Menstruation
- Iron deficiency in diet (common in vegetarians).
- Increased demand by the body

 Infancy, pregnancy, lactation.
- \rightarrow One of the most common causes of anemia.

(2) Pathogenesis

- Absence of iron:
 - $_{\odot}$ Protoporphyrin can't form heme
 - Dysfunctional hemoglobin.
 - Erythrocyte volume decrease:
 → Microcytic red blood cells.

Figure 1. Pathogenesis of iron deficiency anemia.

(3) Specific symptoms

- Koilonychia: Spoon-shaped nails.
- Hair loss.
- Pica: Some patients may like to eat clay, ice and starch.

@S.O.B

fatique

1 work last on heart

Taehy candio dizziness

- Glossitis (smooth, red tongue).
- Stomatitis.
- Angular cheilitis.
- \rightarrow Many times is asymptomatic.
- (4) Diagnosis
- History of patient.
- Physical examination.
- Blood test with complete blood count (CBC).
- \bullet Levels of serum ferritin, iron, TIBC and/or transferrin.

Table	1-3.	Useful	tests	in	the	diagr	iosis	of	iron	defici	ency
anemi	a IH	emetol	naía	12	sar	are v	2112	ent	ferm	edade	<u>ac1</u>

	, , , , , , , , , , , , , , , , , , , ,
RBC Hg Hct	1111 - Anomia
MCV	Microcytic
MCH	Hapochranic
МСНС	Ν
Reticulocytes	N / ↑
Leukocytes	N / ↓
Blood smear	Hypochromic and microcytic RBC, elliptocytes.
Platelets	Ν
Serum iron	\downarrow
Ferritin	\downarrow
TIBC	1
RDW	1 Hatickburg
	del-iciency

Usually due to folic acid deficiency in diet.

- Folic acid is also needed for RBC to condense and mature
- \rightarrow Its absence leads to macrocytic and unfunctional RBC.

(3) Diagnosis

Table 1-4. Useful tests in the diagnosis of pernicious anemia [Hematología. La sangre y sus enfermedades].

RBC Hg Hct	↓↓↓↓ → Anemia		
MCV	↑ -> Macro cytic		
МСН	N -7 Normo elvor		
МСНС	N		
Reticulocytes	N / ↑		
Leukocytes	$\downarrow \downarrow \downarrow \downarrow$		
Blood smear	Macrocyte RBC, teardrop cells		
Platelets	↓↓↓↓		
Eest B12, folate!	1 _ Myeloid S.C		
(4) Treatment	Problem so?		

 \rightarrow IM injections of B12

IV) HEREDITARY SPHEROCYTOSIS

(1) Etiology

- Hereditary condition with mutations in membrane proteins and erythrocyte cytoskeleton.
- → Spectrin, ankrin, band 3 or protein 4.1
 → Most common is mutation of spectrin β, ankrin or band 3.
 - \rightarrow Autosomal dominant inheritance.

(2) Pathogenesis

- \rightarrow Takes a spherical form
- \rightarrow Poor ability to tolerate osmotic changes
 - \rightarrow Membrane stiffness
 - \rightarrow Cought in spleen \rightarrow Splenomegaly \rightarrow Hemolysis. \Rightarrow au''

(3) Diagnosis

Table 1-5. Useful tests in the diagnosis of hereditary spherocytosis [Hematología. La sangre y sus enfermedades].

RBC Hg Hct	$\downarrow \downarrow \downarrow \downarrow \downarrow$	
MCV	\downarrow	
МСН	N / ↑	
MCHC		
Reticulocytes	$\uparrow \uparrow \uparrow \uparrow$	
Blood smear	Microspherocytes	
Platelets	N / ↑	
Coombs Test	Negative	

Possible treatment? Splenectomy

V) G6PDH

Aplastic

usel by -> Parvo. V. BI

Glucose 6-phosphate Dehydrogenase deficiency

(1) Etiology

Hereditary condition > X-linkee A-type + African, Normal engine, but & half-life (2) Pathogenesis M-type + Meliterromean, more severe, Grayme deficiency

In order to obtain energy, RBC can only do glycolysis:

Glucose Glucose-6-phosphate dehydrogenase 6-Phosoho-Glucose glucanolactone 6-phosphate @Asymptomatic, till exposed GSSG to environmental factors NADP NADPH (oxidized 95: 1) Orcigis: Anti malarial, sulfonamile glutathione) 2) favism > beans 3) Products of FR in inf GSH (reduced Effects of this process: glutathione) • Erythrocytes generate energy.

- The NADPH obtained thanks to the action of the G6PD enzyme, reduce glutathione allowing it to catch free radicals that are harmful for the RBC.
- → In the absence of G6PD there won't be NADPH production.
 - \rightarrow Glutathione won't get reduced.
 - \rightarrow Free radicals won't get cached by glutathione. \rightarrow Damage to RBC membrane

oxidize

ightarrow Heinz bodies

(3) Diagnosis

 \rightarrow Heinz bodies on blood smear.

TYPES OF ANEMIAS

HEMATOLOGY: Note #1.

VIII) APLASTIC ANEMIA

Hematopoietic failure!

(1) Etiology

- Idiopathic in 65%
- Drugs (e.g. chloramphenicol, benzenes, streptomycin, etc.).
- Viruses (CMV, EBV).
- Radiation.

(2) Pathogenesis

- Destruction of the myeloid stem cells
- \rightarrow decreased production of RBC's, WBC's and platelets. \rightarrow Pancytopenia

(3) Specific symptoms

- Current infections due to leucopenia. • Petechiae (↑ bruising).
 - NO Splenomegaly

• Bleeding. (4) Diagnosis

Table 1-6. Useful tests in the diagnosis of aplastic anemia [Hematología. La sangre y sus enfermedades]

RBC Hg Hct	ţţţţ	
MCV	N -> Normocy Exc	3
MCH	N De Mac 20	ytic
MCHC	N	
Reticulocytes	N / ↑	
Leukocytes	L: ↑ N: ↓	
Platelets	$\downarrow \downarrow \downarrow \downarrow$	
Bone marrow examination	Hypocellularity	

(5) Treatment

- Bone marrow transplant.
- Transfusions.
- · Respond well to immunosuppressives!

(1) Etiology

Pancytopenia

- Hereditary condition where there is an absence of a globin chain
 - \circ If there is an α -chain missing $\rightarrow \alpha$ -thalassemia.
 - o If there is a β -chain missing $\rightarrow \beta$ -thalassemia. \rightarrow Mutation in RUA
- \rightarrow More common within the Mediterranean ancestry.

Nice to know Hemoglobin is formed with two α -chains and two β -chains.

(2) Pathogenesis

• Low functional hemoglobin due to its structure mutation ○ MCV >90 ft

Microcytic anemia.

(3) Diagnosis

Table 1-7 Differential diagnosis of thalassemia and iron deficiency anemia [Hematologïa. La sangre y sus enfermedades].

	Thalassemia	Iron deficiency
RDW	Ν	↑
Serum ferritin	N / ↑	Ļ
Serum iron	N	\downarrow
Transferrin saturation	Ν	Ť

(4) Treatment

- Transfusions.
- Iron supplements.
- Oxygen.
- Bone stem cell transplant.

Anemia of chronic Diseases

- -Impairel Red cell production associated w/ chronic diseases that produce systemic inflammation.
- Most common Anemia among hospitilized pt.
- Hh and Hct
- Could be Shypochromic microcytic Normodiromic normocytic
- 99 Ferritin
- VITTBC

X) APPENDIX

XI) REVIEW QUESTIONS

1) A 31 year old woman is presented with history of fatigue, dizziness and headaches since three months ago.

A blood test was performed and results showed Hb 10 g/dL; Hct 40%; MCV 78 fl; MHC 25 pg and MCHC 30%.

- According to laboratory findings, how would you morphologically classify this type of anemia?
 - a) Microcytic normochromic.
 - b) Macrocytic hypochromic.
 - c) Microcytic hypochromic.
 - d) Normochromic normocytic.

2) The following test comes to be very useful in the differential diagnosis of hereditary spherocytosis and autoimmune hemolytic anemia:

- a) RDW
- b) Peripheral blood smear
- c) TIBC
- d) Coombs test
- 3) G6PDH deficiency is a condition where glucose can't turn into 6-phospho-glucanolactone due to lacking of G6PDH, which leads damage to RBC's membranes.

What is exactly the mechanism of this damage?

- a) NADP can't turn into NADPH so glutathione can't be oxidized, leading to increased free radicals.
- b) NADP can't turn into NADPH so glutathione can't be reduced, leading to increased free radicals.
- c) NADPH can't turn into NADP so glutathione can't be reduced, leading to increased free radicals.
- d) NADPH can't turn into NADP so glutathione can't be oxidized, leading to increased free radicals.

4) If you're suspecting of pernicious anemia on your patient, which finding on a blood smear test would support your diagnosis?

- a) Teardrop cells.
- b) Elliptocytes.
- c) Heinz bodies.
- d) Microspherocytes.

5) The followings are specific symptoms of iron deficiency anemia EXCEPT for:

- a) Pica.
- b) Tachycardia.
- c) Koilonychia.
- d) Angular cheilitis.

CHECK YOUR ANSWERS

XII) REFRENCES

 Le T, Bhushan V, Sochat M, Chavda Y, Zureick A. First Aid for the USMLE Step 1 2018. New York, NY: McGraw-Hill Medical; 2017
 Marieb EN, Hoehn K. Anatomy & Physiology. Hoboken, NJ: Pearson; 2020.

- Boron WF, Boulpaep EL. Medical Physiology.; 2017.
- Urry LA, Cain ML, Wasserman SA, Minorsky PV, Orr RB, Campbell NA. Campbell Biology. New York, NY: Pearson; 2020.

 Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J. Harrison's Principles of Internal Medicine. New York

etc.: McGraw-Hill Education; 2018.
 Sabatine MS. Pocket Medicine: the Massachusetts General

Hospital Handbook of Internal Medicine. Philadelphia: Wolters Kluwer; 2020.

• Pérez, J.C. Hematología. La sangre y sus enfermedades (4.ª ed.). Editorial McGraw-Hill; 2015.

Anemia: Part 1 - Anemia Classification, Diagnosis, and Routine
 Work up. (2021, 1 junio). Labpedia.Net. <u>https://labpedia.net/anemiapart-1-anemia-classification-diagnosis-and-routine-workup/</u>