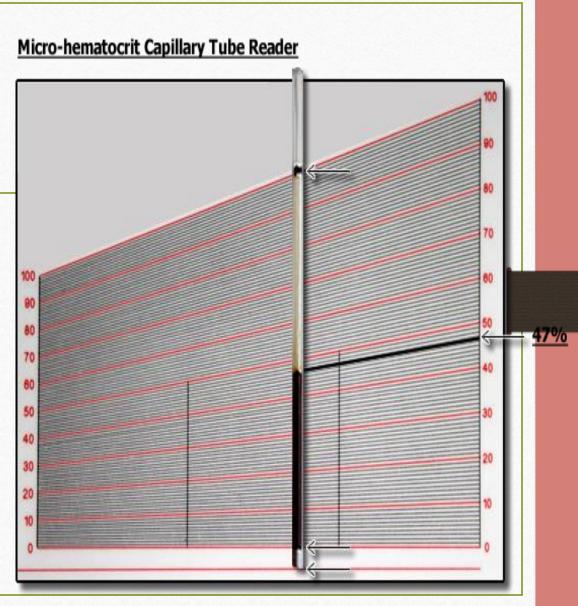


<u>1- Hematocrite value (H.V.) or</u> packed cell volume:

Definition:-

H.V. is the volume of RBCs in 100 ml blood or it is the percentage ratio of the volume of RBCs to the volume of whole blood.


= Volume of blood

Materials:-

- Microhematocrite tube (75 mm long, 1 mm pore, heparinized)

 $\times 100$

- Microhematocrite centrifuge.
- Micro hematocrite tube reader.
- Sterile lancet, 70 % ethyl alcohol.

Volume of RBCs

• **Procedure:** - Obtain blood drop by pricking the thumb.

- Micro hematocrite tube is filled up to it's 2/3 with blood sample by touch the drop of blood by one end of the tube.

- Close the empty end of the tube by plasticine.
- - Centrifuge the tube at 12000 per minute for 5 minutes.
- Remove the tube and read H.V. by putting the tube on special micro hematocrite scale.
- Normal value:-
- About 47 % in adult male , 42 % in adult female, In children = 36-44 % and in new born = 50-58%
- Increases by: -increased RBCs (polycythaemia)

-decreased plasma (dehydration or hemo-concentration as after burn)

- **Decreases** by: -decreased RBCs (anaemia) -increased plasma (overhydration)
- Used in : Calculation of blood volume, Renal blood flow and blood indicies.

-Physiologically Ht. value is More:

1- In venous blood than in arterial blood as RBCs volume is large in venous blood due to chloride shift phenomenon.

2- In large vessels due to skimming phenomenon as RBCs prefer to pass in large vessels than in small blood vessels.

3- And in **newborn** as he contains more RBCs due to relative ischemia during intra-uterine life.

2- Hemoglobin content of the blood (HB %)

Definition:-Hemoglobin is the principal constitute of RBCs . It is a red pigment, which gives the blood its red colour.

Materials:-

-Sahli Adams Haemometer (**Sahli' Haemometer** made up of plastic frame with two standard brown coloured glass and graduated tube and pipette) - 0.1 HCl.

- Dropper.
- Ethyl alcohol, cotton, sterile lancets.

Procedure:-

-Fill the graduated tube of Sahli haemoeter to mark 5 with 0.1 N Hcl. -

- 20UL blood is drawn from a thumb puncture, into a pipette then transfer it to the graduated - tube and mix well until formation of a brown yellow solution (**acid hematin**).

- Place the graduated tube beside the standard and allow to stand for 15 minutes. -

- Add distilled water drop by drop and mixing until the colour in graduated tube matches the standard.

- Read the concentration of HB in gram / 100 ml $\,$

Normal value:-

- 14 17 gm /100 ml in adult male.
- 12 15 gm / 100 al in adult female.
- more in **new born**.

Function of Hb:

- Carriage of O2 & CO2
- Strong buffer system.

• Reactions of Hb:

1-**Oxyhemoglobin:** O2 bind with iron in ferrous state so it is called oxygenation not oxidation. This binding affected by pH, temperature and 2,3-diphosphoglycerate in RBCs.

2-Met Hb: strong oxidation by certain drugs or oxidizing agents \rightarrow ferric state which not carry O2 \rightarrow dusky colouration of skin like cyanosis (normally, MetHb doesn't exceed 0.5% due to the activity of NADH-MetHb-reductase enzyme in the RBCs which converts it back to normal Hb).

3-Carboxy Hb: carbon monoxide is a toxic gas and attached to Fe++ in high affinity (210 times as O2). This part attached to CO doesn't carry O2 and the remaining part of Hb, which carries O2 doesn't give its O2 to the tissue.

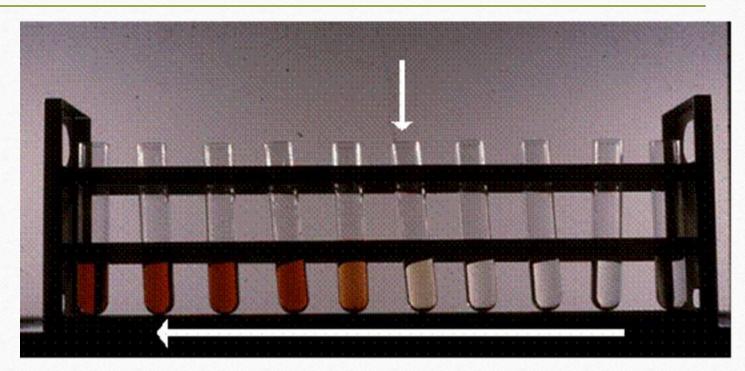
4-Carbamino Hb: normally Co² attached to the globin part of Hb.

Types of Hb:

1-Adult (HbA): contain 2 α chain (each is consisted of 141 amino acids) and 2 β chain (146 amino acids).(97.5% of adult Hb.)

2-HbA2: contain 2α chains and 2 delta (146 amino acids) chains which differ from β -chains in the terminal 10 A.A.

3-Fetal Hb (**HbF**): It is the type of Hb in the human **fetus** then it is usually replaced by adult Hb after birth, It contain 2α and 2 gamma (146 amino acids) chains which differ from β -chains in 37 A.A.


-It has high affinity for O2 and less to 2,3 diphosphoglycerate ,So this facilitate movement of O2 from maternal circulation to the fetus.

4-Glycosylated Hb: (3-7% of Hb) glucose is attached to terminal value amino acid in β -chain. This value increases in cases of uncontrolled diabetes mellitus.

5-HbS : It is abnormal type of Hb due to congenital abnormality of β -globin in which value amino acid present instead of normal glutamic acid at position 6 of β -chain \rightarrow hemoglobin-S which causes sickle cell anaemia .

3- Osmotic Fragility test

- **Definition :** it's the ability of RBCs to withstand osmosis of hypotonic solution if placed in it.
- Materials :
- . Rack of 11 test tubes
- . Nacl 1%solution
- . Dropper
- . Distilled H2O

Procedure

- Prepare tests tubes in the rack as follow

Test Tube	1	2	3	4	5	6	7	8	9	10	11
Drops of NaCl	5	6	7	8	9	10	11	12	13	14	15
1%											
Drop of H ₂ O	15	14	13	12	11	10	9	8	7	6	5
Conc. of solution	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75

-Add one drop of blood to each tube

- Shake the tube gently to mix blood with the fluid
- After 15 minutes examine for the degree of hemolysis .
- **N.B**: **Red clear** transparent solution→ **complete hemolysis**
 - Red opaque fluid -> partial hemolysis

-Supernatant clear fluid and RBCs sedimented in the bottom of the tube \rightarrow No hemolysis.

- -Normal : Partial hemolysis starts at a concentration of NaCl 0.45 % and complete hemolysis occurs at a concentration of NaCl 0.3%
- More fragility occurs in:

(1) Infant RBCs (2) venous RBCs (have big size) (3) \uparrow Co2 and acidity (4) old RBCs (5) Spherocytosis.

- Less fragility occurs in : sickle cell anaemia and iron deficiency anaemia.

