Gastrointestinal Tract Module Bacterial infections 2022-2023

Dr. Mohammad Odaibat Department of Microbiology and immunology Faculty of Medicine, Mutah University

Bacterial infections of GIT

Introduction

Classification

Gastroenteritis/Food poisoning S. aureus C. botulinum C. perfringens B. Cereus

<u>Watery (secretory) diarrhea</u>
V. cholera
ETEC
EPEC

<u>Cell invasion</u>

Shigella Salmonella enteritidis EHEC EIEC

Antibiotic associated diarrhea *C. difficile*

<u>Cell invasion and bacteremia</u> *C. Jejuni Salmonella typhi*

Gastritis and ulcers H. pylori

Staphylococcus aureus

➢ Food poisoning occurs when consuming a food that is contaminated with bacterial toxin

➢Bakery, meat, poultry, egg products, mayonnaise-based salads, cream-filled pastries and cakes, and other dairy products.

Mechanism of intoxication

- Conatminated hands or through coughing or sneezing into foods that are ready to eat.

-The toxin is resistant to gastric pH and heat.

Staphylococcus aureus

Clinically:

- Short incubation period of 1-6 hrs
- ➤Mild fever

Symptoms may last 12 hrs -2 days on average

Treatment

Usually self limiting
 Rehydration fluids
 Controlling fever (if any)

➢Occasionally hospitalization, particularly when infants, elderly or debilitated people are concerned

Bacillus cereus

Clinically

Ingestion of spores in contaminated meat, fish, and vegetables, raw starchy foods such as pasta, potatoes, pastries and noodles)

➢ 95% of cases are associated with rice dishes (fried Rice Syndrome)

The diarrhea is caused by in vivo production of a heat-labile enterotoxin

➢longer incubation (6-24 hours)

Watery diarrhea, abdominal cramps

➤vomiting (25%)

Duration of illness ranges from 20-36 hou

24 hours

Bacillus cereus

<u>Control</u>

> By proper cooling and storage of food rice in particular should not be stored for long periods above 10°C.

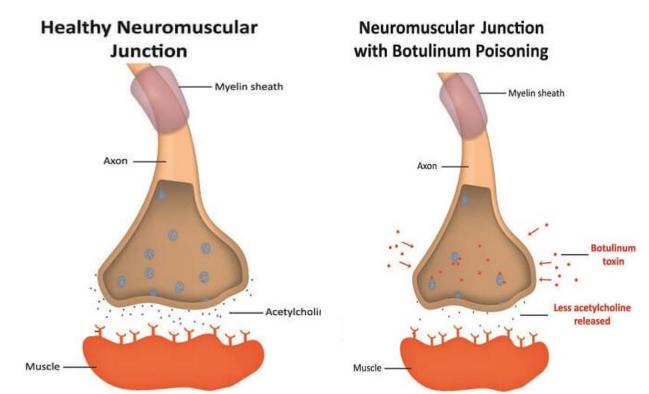
Treatment

➢Oral rehydration

>Intravenous fluid with severe dehydration and vomiting

Antibiotics are not indicated

(B. cereus = Be serious not to give antibiotics)


<u>Diagnosis</u>

By the isolation of *B. cereus* from the implicated food, but such testing is often not done because the illness is relatively harmless and usually self-limiting

Clostridium botulinum (flaccid paralysis)

Botulinium Neurotoxins

- Seven different types: A through G
- Destroyed by boiling

Botulinium toxin (Mode of action)

Clinical categories of botulism

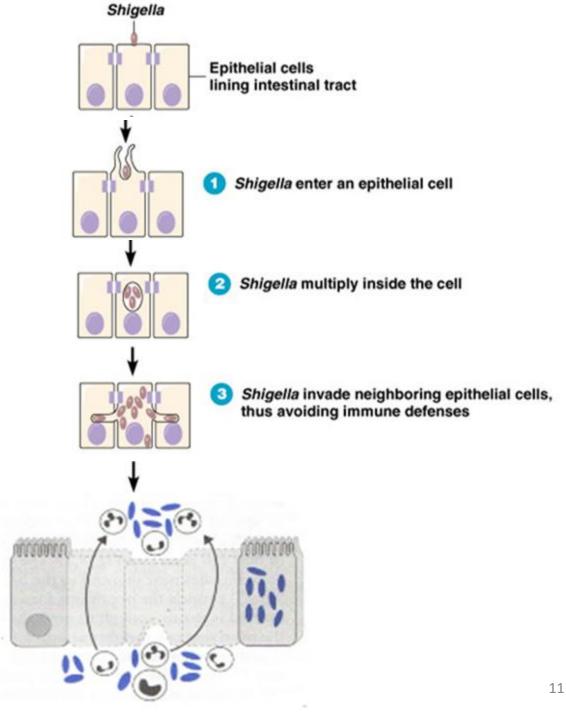
- 1. Foodborne botulism
- Most common from home-canned foods

- Onset : 18 to 36 hours after exposure (range, 6 hours to 8 days)
- Early: nausea, vomiting, weakness, dizziness but no fever
- Late: double vision, difficulty in swallowing, and speaking
- In severe cases, death due to respiratory muscle paralysis

<u>2. Infant botulism</u>

- Contaminated food with spores from varied sources (Honey, food, dust, corn syrup)
 - Baby will develop a weak cry, decreased sucking, floppy head and decreased motor response to stimuli
- Death if not treated

<u>Cell invasion</u> Shigella Salmonella enteritidis EHEC EIEC


Shigella

Sources of infection

- Fecally contaminated water
- Any food contaminated by a food handler with poor hygiene
- Raw vegetables
- S. dysenteriae (Group A, the most pathogenic)

pathogenesis

- •Destruction of endothelial cells causing hemorrhage
- Bacteria enter
 blood are quickly
 killed by phagocytes

Shigella

Clinically

- The infective dose is between 10-200 organisms
- Incubation of 1-7 days
- Followed by fever, cramping, abdominal pain, and watery diarrhea for 1-3 days
- This may be followed by scant stools with blood, mucous, pus, and tenesmus

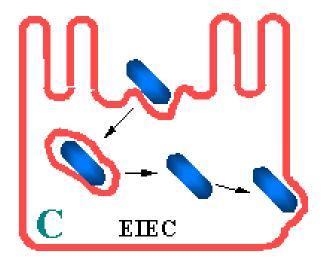
Diagnosis

- Dehydration with fast heart rate and low blood pressure
- Abdominal tenderness
- Elevated white blood cell count
- Stool culture
- White and red blood cells in stool

Shigella

Treatment

- Self limiting
- Rehydration
- Antibiotics are usually avoided in mild cases
- Medical treatment should only be used in <u>severe cases</u> or for <u>certain populations with mild symptoms</u> (elderly, immunocompromised, food service industry workers, child care workers)

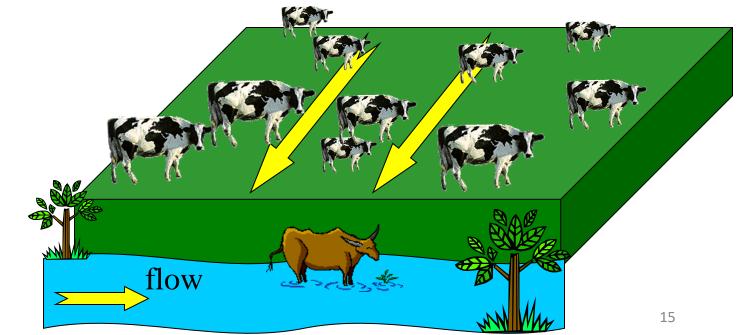

Control

- Proper hand washing after using the bathroom.
- Use properly treated water.
- Cook foods to appropriate temperatures

Enteroinvasive E. coli (EIEC)

Pathogenesis

Similar to Shigella


Enterohemorrhagic E. coli (EHEC)

Source of EHEC infection

- Consumption of contaminated food water, milk, or by contact with animals, feces and contaminated soil
- Infected hamburger, salami, and sausages served at fast food chains

Characteristics

Produces Shiga-like toxin (also called verotoxin).

Diagnosis

This is most often caused by serotypes O157:H7

- 1. This strain of *E. coli* can be differentiated from other strains of *E. coli* by the fact that it does not ferment sorbitol in 48 hours (other strains do)
- 2. One must confirm that the isolate is *E. coli* O1547:H7 using serological testing
- 3. Confirm production of the shiga-like toxin by either ELISAs, agglutination, or immunoblotting before reporting out result.
- 4. Genotyping for shiga toxin gene

Salmonella

General characteristics

- Salmonella (like Shigella) is never a part of the intestinal flora (always pathogenic)
- Different types of the *Salmonella* bacteria can cause the illness. The two most common pathogens are
 - S. typhimurium
 - S. enteritidis.

Salmonella

Salmonella associated diseases Gastroenteritis or salmonellosis (diarrhea)

- <u>Reservoir</u>:
- Normal flora of domestic animals, especially cattle, chickens, and exotic pets such as turtles
- Poultry, pork, beef and fish (seafood): if the meat is prepared incorrectly or is infected with the bacteria after preparation
- Infected eggs, egg products, and milk when not prepared, handled, or refrigerated properly
- Contaminated fruits and vegetables
- Humans are infected when there is contamination of food or water with animal feces

Salmonella

Pathogenesis

The bacteria remains restricted to the intestine: The inflammatory response prevents the spread beyond the GI tract and eventually kills the bacteria.

Manifestations (Gastroenteritis)

- Typically, the episode begins 24 to 48 hours after ingestion
- Diarrhea persists for 3 to 4 days and usually resolves spontaneously within 7 days.
- Fever (39°C) is present in about 50% of the patients.
- The spectrum of disease ranges from a few loose stools to a severe dysenterylike syndrome
- Patients may require hospitalization due to severe dehydration (IV fluids and fever reduction), which is more common among infants and the elderly
- Prevention: hygiene and proper cooking

Bacterial infections of GIT

Introduction

Classification

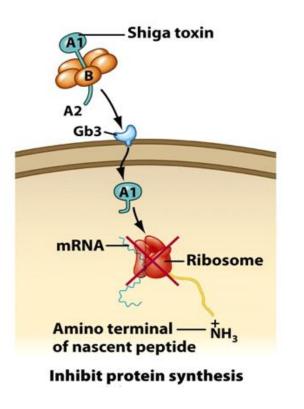
Gastroenteritis/Food poisoning S. aureus C. botulinum C. perfringens B. Cereus

<u>Watery (secretory) diarrhea</u>
V. cholera
ETEC
EPEC

<u>Cell invasion</u>

Shigella Salmonella enteritidis EHEC EIEC

Antibiotic associated diarrhea *C. difficile*


<u>Cell invasion and bacteremia</u> *C. Jejuni Salmonella typhi*

Gastritis and ulcers H. pylori

Escherichia coli

Virulence factors

- Pili: attachment
- > Toxins:
- 1. Shiga-like toxin (Stx)

- heat-Labile toxin (LT)) (inactivation at <u>60°C for 30</u> minutes)
- Activation of adenylate cyclase
- Increase CL secretion which follows by Na and H₂O leading to diarrhea

3. heat-Stable toxin

Mediates the inhibition of Na+ absorption and stimulates chloride secretion by enterocytes.

Epidemiology

>ETEC is the leading cause of diarrhea in travelers from developed regions returning from vacations (travelers diarrhea).

Contaminated food and drink with Human or animal wastes.

Types of toxins and pathogenesis

> A heat-stable toxin and a heat-labile toxins

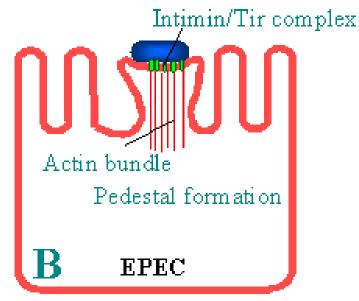
 \succ The organism attaches to the intestinal mucosa via colonization factors and then liberates enterotoxin

Entero oxigenic = Travelers

Clinically

➤Self-limiting diarrhea

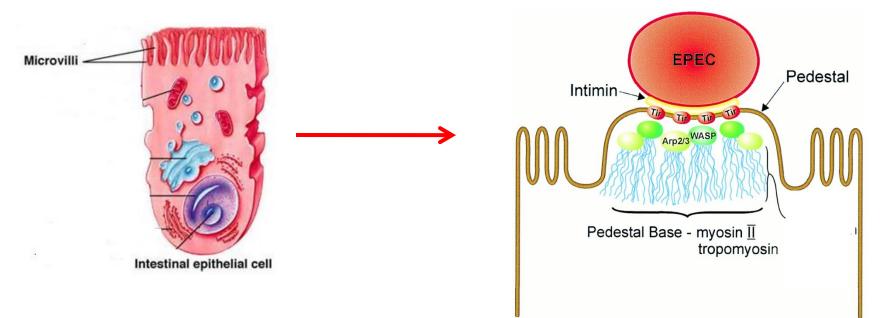
> Recovery within a few days, without specific treatment



Enteropathogenic E. coli (EPEC)

Epidemiology

- Contaminated drinking water and meat products
- Contact with domestic animals
- > Typically occurs in neonates and children ≤ 2 years of age (mostly ≤ 6 months), why?
- During hospital outbreaks, EPEC is isolated from asymptomatic carriers including nursing and family members (1% -30%)


(Pathogenic=Pediatrics)

Enteropathogenic E. coli (EPEC)

Mechanism of diarrhea

- 1- Attachment and effacing
- By Intimin and its translocated intimin receptor (Tir)
- Attachment to enterocytes
- Formation of microcolonies
- > The net result is the loss of microvilli (effacing)
- 2- Injection of protein that mediate electrolyte imbalance

Enteropathogenic E. coli (EPEC)

Clinically

- > Fever (60%)
- Watery diarrhea that is often severe and can result in dehydration (30%)
- Abdominal distension
- Symptoms usually last for one week

Diagnosis

- > Diarrhea, commonly lasting for <u>as long as two weeks</u>
- Detection of EPEC pili by specific antibodies or PCR amplification for pili encoded gene (not widely available)

Bacterial infections of GIT

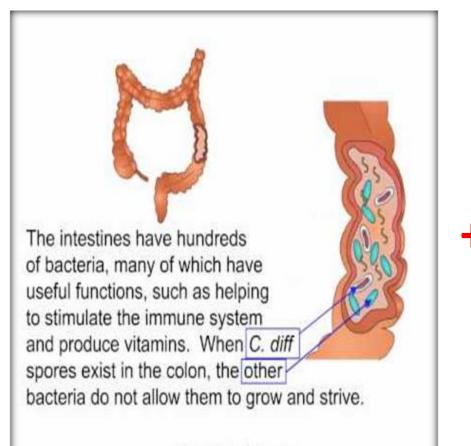
Introduction

Classification

Gastroenteritis/Food poisoning S. aureus C. botulinum C. perfringens B. Cereus

<u>Watery (secretory) diarrhea</u>
V. cholera
ETEC
EPEC

<u>Cell invasion</u>


Shigella Salmonella enteritidis EHEC EIEC

Antibiotic associated diarrhea *C. difficile*

<u>Cell invasion and bacteremia</u> *C. Jejuni Salmonella typhi*

Gastritis and ulcers H. pylori

www.patedu.com

Antibiotic = Diarrhea treatment

Because of *C. difficile* it becomes very difficile (difficult) to give a patient antibiotics 27

Associated toxins

Pathogenic strains produce two toxins:

- Toxin A is an enterotoxin that causes excessive fluid secretion, but also stimulates an inflammatory response
- ➢ Toxin B is a cytotoxin; in tissue culture, it disrupts protein synthesis and causes disorganization of the cytoskeleton

Diagnosis

- A. Clinical diagnosis
- ➢ Diarrhea occurring ≥ 3 times a day for at least 2 days
- Abdominal cramping, fever, and dehydration
- Peripheral leukocytosis
- Pseudomembranes: The membrane composed of mucus, fibrin, inflammatory cells and cell debris overlying an ulcerated epithelium, is best demonstrated by lower GI endoscopy
- Toxic megacolon (Infrequently)
- Colonic perforation/peritonitis

B. Laboratory identification

- C. difficile can be cultured from stools and identified by routine anaerobic procedures
- Real-time PCR and ELISA (demonstrating of toxin)
- Latex agglutination to detect antigen in stools

Pseudomembranous Ulcerative Colitis

501

Pseudomembrane, Bacterial Overgrowth

1000

Normal Cecum, Endoscopy Image

100

C. difficile overgrowth

Treatment

- Stop all non-essential antimicrobial agents.
- Consider anti- *C. difficile* therapy as recommended
- Discontinue all antiperistaltic, stool softeners, laxative medications

Infection Control

- Requires gowns and gloves for room entry before contact and hand washing with antiseptic soap after contact
- Pateint Isolation immediately
- ➢ Presumptive isolation may be discontinued after patient is without symptoms for ≥72 hours or a negative PCR result