

9. BLOOD LYSIS.

Prof. Sherif W. Mansour Physiology dpt., Mutah School of medicine 2020-2021

*Causes of **fluidity of blood** inside the cardiovascular system [Factors against intravascular clotting]:

These factors prevent blood clotting in normal state and in cases of injury they limit the process of blood coagulation to the site of injury and help re-canalisation of thrombosed blood vessels:

1) Role of smoothness of endothelium in prevention of clotting:

- a- Prevent contact activation of XII.
- b- Protein that covers the endothelium has -ve charges which repels -ve charged platelet & clotting factors.
- c- Protein (**thrombomodulin**) which cover endothelium binds with thrombin preventing its action and this complex activates protein- C that act as an anticoagulant.
- d- Release of prostacyclin (major inhibitor of platelets aggregation) from the healthy endothelium.

2) Anticoagulant in the blood itself:

- a- Blood flow: Removal of activated coagulation factors by the circulating blood and their inactivation in the liver, spleen and the bone marrow.
- b- Antithrombin action of fibrin and antithrombin III:

Fibrin: adsorb about 90% of thrombin formed during this process preventing its spread into the blood causing more coagulation.

Antithrombin III (alpha globulin) Combine and inhibit the remaining thrombin and factor Xa.

c- **Protein C** & **protein S**: (Both are natural anticoagulants are formed in the liver in presence of vit.K)

Protein C: activated by thrombin and inhibits the clotting factors V and VIII and stimulate fibrinolysis.

Protein S: potentiate the effect of protein C.

d-Heparin:

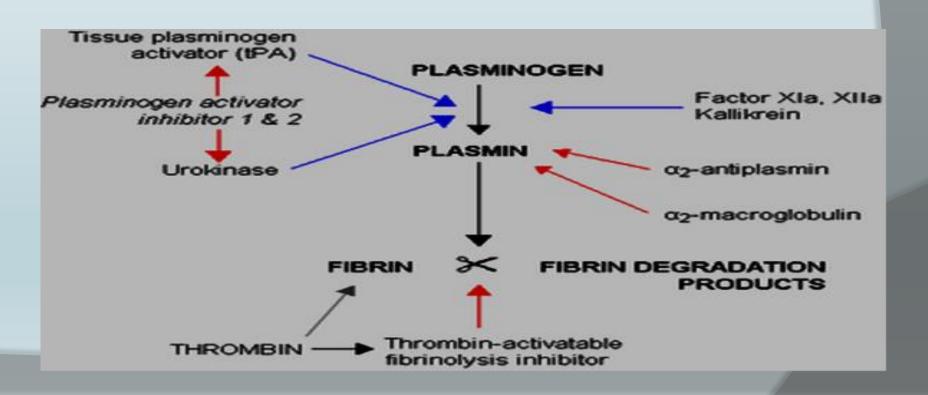
- It is the most powerful anticoagulant
- It is negatively charged muco-polysaccharide.
- It is secreted by mast cells and basophile cells in minute amounts.
- Mechanism of its action:
- 1. It combines with anti-thrombin III aiding its inhibition of thrombin Also, it inhibits the activated factors IX, X and XI
- 2.It inhibits platelet aggregation and stimulate fibrinolysis.
- 3.Lipaemia clearing effect occur by activation of lipase enzyme to hydrolyse lipids and prevent its deposition in blood vessels so prevent the development of atherosclerosis.
- e- Alpha2-macroglobulin: bind and inhibit coagulation factors.
- f- Alpha1-antitrypsin: Inactivate factor XIa and thrombin.
- g-Plasmin (fibrinolysin):causes breakdown of fibrin, fibrinogen, prothrombin, factor V, VIII and XII.

- *Prevention of blood clotting outside the body [Invitro anticoagulants]
- (1) Blood is collected in silicon or paraffin coated test tube to prevent aggregation and activation of factor XII.
- (2) Cooling of the blood delay clotting.
- (3) Removal of Ca++ ions: by
- Precipitation of ionized calcium by addition of Na oxalate \square Ca++ oxalate (toxic) or by EDTA.
- Adding of Na citrate \rightarrow Chelation of Ca++ and formation of non-ionized Ca++ (Ca++ citrate). This compound is not toxic, and rapidly removed from the blood so citrate is used in blood transfusion.
- EDTA (Ethelyne diamine tetraacetic acid) → Chelation of Ca++
- (4) De-fibrination of blood by a glass rod.
- (5) Addition of heparin as in artificial kidney machine.
- *Prevention of blood clotting **inside** the body [**Invivo anticoagulants**]

 Drugs are used for prevention and treatment of thrombosis as in:
- 1- Deep venous thrombosis or pulmonary thrombosis.
- 2- Myocardial infarction.
- 3- After cardiac surgery.
- 4- Rheumatic valve disease complicated with embolism.
- 5- In hereditary deficiency of anti-thrombin III, protein C or S.

- There are two types of anticoagulants drugs:

	Heparin	Coumarin
<u>-Origin:</u>	- Animal origin from	- Plant origin as warfarin
	mast cells and basophils	and Dicumarol
-Mode of action:	- Anti-thrombin	- Competitive inhibition with vit K in
	- Inhibits platelet aggregation	liver. So prevent formation of factors
	- minores prateret aggregation	II, VII, IX & X and protein C & S.
	- Prevent activation of IX, X, XI	
	- Lipaemia clearing effect	
-Site of action	-In vivo and in vitro	-In vivo only
-Onset:	-Rapid	-Delayed onset (1-3 days)
-Duration:	-Short duration (4-6 h.) then	-Long duration (3 days)
	hydrolysed by Heparinase	
	enzyme.	
-Mode of	-Intravenous or intra-muscular	-Orally
administration:	(as it is digested by the stomach)	
-Antidote:	-Protamine sulphate 1% (It has	-Vitamin K or blood transfusion
	strong positive charges to	
	neutralize the negative charges of	
	heparin)	


Fibrinolytic System

* Definition:

- Fibrinolysis means lysis and removal of blood clot after stoppage of bleeding and healing of the vascular wall.
- This is produced by enzyme called plasmin (fibrinolysin) which present in plasma as inactive plasminogen (pro-fibrinolysin).

* Mechanism:

- After the blood clotting stops the bleeding, tissue plasminogen activator (t-PA) converts plasminogen into plasmin which lyses the blood clot into fibrin degradation products (FDP).
- After lysis of the blood clot, plasmin, t-PA and FDP are removed by the phagocytic cells.
- Then the inhibitor to t-PA limit its effect to site of blood clot only.

*Activation of plasminogen & fibrinolysis:

- (1) Tissue plasminogen activator: (t-PA): Released from injured tissue & endothelium but the plasma contains a physiological inhibitor to the t-PA to balance its effect.
- (2) Factor XII, Kallikrein & thrombin.
- (3) Other physiological activators as:
 - a- Urokinase enzyme in the urine to lyse blood clots in the urine.
- b-Enzymes in pleural, peritoneal & uterine cavities to prevent blood clot in these sites and passage of uterine blood to outside.
- (4) Exogenous activators: as streptokinase enzyme from bacteria to treat acute myocardial infarction to dissolve clot.

*Inhibition of fibrinolysis:

- (1) Inhibition of plasmin: by α 2 Anti-plasmin, α -2-macroglobulin & α -1 anti-trypsin.
- (2) Inhibition of tissue plasminogen activator.

* Significance of fibrinolysis:

- 1- Lysis of blood clots & reopening the blood vessels and prevent closure of capillaries by sluggish circulation.
- 2- Cleaning of the tissue from the blood clots formed outside the blood vessels
- 3- Removal & prevent bl. clots in the urinary tract (to prevent blocking of renal tubules), pleural, uterine & peritoneal cavities.
- 4-Treatment of early stages of myocardial infarction by:
 - Injection of tissue plasminogen activator.
 - Streptokinase & urokinase injection [direct on the clot].

Thank You