

ENDOCRINE PHYSIOLOGY

RENAL GLAND: CORTISOL

Endocrinology | Adrenal Gland: Cortisol

OUTLINE

I) ADRENAL GLAND ANATOMY **II) CORTISOL SYNTHESIS III) EFFECTS OF CORTISOL** IV) STIMULI V) FEEDBACK **VI) REVIEW QUESTIONS** VII) REFRENCES

I) ADRENAL GLAND ANATOMY

(1) In the abdominal cavity

below the diaphragm

- o The liver is on the right side
- $_{\odot}$ The spleen is on the left side
- Below them are located the two kidneys

(2) The adrenal glands

 sit on top of the kidneys o Also called suprarenal glands Have a roughly pyramid shape

(3) Parts of the adrenal gland

- Cortex
 - o Has three layers
 - Zona glomerulosa
 - Most superficial
 - Zona fasciculata
 - In the middle
 - The thickest
 - Zona reticularis
 - The deepest
 - o All layers are mostly glandular cuboidal epithelial tissue
- Medulla
 - Has only one layer
 - o Made up of neural tissue

II) **CORTISOL SYNTHESIS**

(1) The paraventricular nucleus

- in the hypothalamus secrete corticotropin-releasing hormone (CRH)
- CRH goes in the hypophyseal portal system > The vascular connection between the hypothalamus and the anterior pituitary (adenohypophysis)

(2) CRH stimulates

• specific cells - the corticotropes in the adenohypophysis to secrete adrenocorticotropic hormone (ACTH) into the bloodstream



Figure 1 Synthesis of CRH and ACTH

Medical Editor: Ilia-Presiyan Georgiev

(3) ACTH goes

to the adrenal cortex

- Binds to a g-protein coupled receptor
 - Triggers an intracellular cascade

(4) It activates a G stimulatory protein

- that goes to an effector enzyme on the cell membrane -Adenylate cyclase
 - The effector enzyme has a specific point of attachment for the Gs protein
 - o The effector enzyme becomes very active

(5) Adenylate cyclase

- has a specific enzyme GTPase
 - o GTPase cuts the GTP and turns it into GDP
 - Energy is produced and used to convert ATP to cAMP
 - cAMP activates protein kinase A (pkA)

(6) In the adrenal cortex

- steroid hormones are synthesized o This synthesis requires cholesterol as a basic unit
- Cholesterol is converted to pregnenolone
 - → Pregnenolone is converted to progesterone → Progesterone is converted to 17-hydroxy
 - progesterone → 17-hydroxy progesterone is converted to 11-
 - deoxycortisol
 - by 21-hydroxylase
 - -> 11-deoxycortisol is converted to cortisol
- Each step in this pathway is regulated by specific enzyme

(7) The activated pkA

- activates by phosphorylation the enzymes catalyzing this pathway
 - On multiple steps
- Therefore, ACTH is one of the strong stimuli for cortisol synthesis

(8) Cortisol is released into the bloodstream

- It is a steroid hormone
 - o needs to bind to specific proteins for transportation ~75% binds to corticosteroid binding globulin
 - - ~25% of it binds to albumin

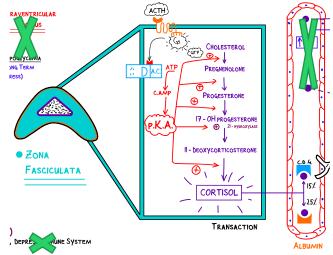


Figure 2 Synthesis of cortisol.

(CBG)

• A.k.a. transcortin

- A protein synthesized by the liver

III) EFFECTS OF CORTISOL

(A) EFFECTS ON THE SKELETAL MUSCLES

(1) In the muscles

- there are a lot of proteins
 - $_{\odot}$ Made up of amino acids
 - $_{\odot}$ Have an amino terminus and a carboxyl terminus

(2) As a steroid hormone

- cortisol passes through the lipid bilayer of the cell membrane
- Binds to an intracytosolic receptor o Activates it

(3) The activated receptor activates specific genes

- expressed in the nucleus
- Those genes are transcribed • Producing mRNA
- mRNA goes into the cytoplasm
 The ribosomes translate it into proteins proteases

(4) The proteases break

- the peptide bonds inside the proteins
 - $_{\odot}$ Produce amino acids
 - Released into the bloodstream
 - Go to the liver
- The process is called **protein catabolism** o It is stimulated by cortisol
- Cortisol also stimulates catabolism within the bones

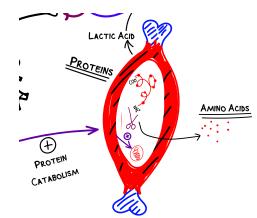


Figure 3 Effects of cortisol on the skeletal muscles.

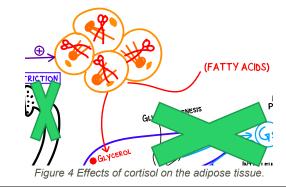
(B) EFFECTS ON THE ADIPOSE TISSUE

(1) Cortisol affects

• the adipocytes of the adipose tissue • Main component – triglycerides

(2) As a steroid hormone

- cortisol passes through the lipid bilayer of the cell membrane
- Binds to an intracytosolic receptor o Activates it


(3) The activated receptor activates specific genes

- expressed in the nucleus
- Those genes are transcribed
- Producing mRNA
- mRNA goes into the cytoplasm
 The ribosomes translate it into proteins

(4) These proteins break down

- the triglycerides into
 - $_{\circ}$ Fatty acids
 - Utilized by the muscles or redistributed and relocated to different parts of the body
 - Glycerol
 - Goes to the liver

• The process is called lipolysis

(C) EFFECTS ON THE LIVER

(1) As a steroid hormone

- cortisol passes through the lipid bilayer of the cell membrane
- Binds to an intracytosolic receptor Activates it

(2) The activated receptor activates specific genes

- expressed in the nucleus
- Those genes are transcribed
- Producing mRNA
- mRNA goes into the cytoplasm
 The ribeserres translate it into
 - The ribosomes translate it into proteins
 These proteins stimulate the processes gluconeogenesis and glycogenesis

(3) Gluconeogenesis is

- a process where glucose is produced from noncarbohydrate sources
 - From the muscles
 - Amino acids
 - I actic acid
 - o From the adipose tissue
 - Glycerol
 - Odd chain fatty acids

(4) Glycogenesis is

- a process where glucose is converted into glycogen o Glycogen is a polymer of glucose
 - A storage molecule for glucose

(5) Cortisol enhances

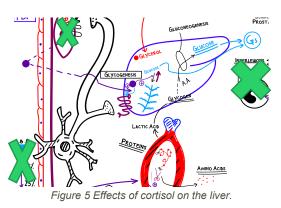
- the sympathetic nervous system
- - They bind norepinephrine

(6) As a steroid hormone

- cortisol passes through the lipid bilayer of the cell membrane
- Binds to an intracytosolic receptor

 Activates it
- (7) The activated receptor activates specific genes
- expressed in the nucleus
- Those genes are transcribed
 Producing mRNA
- mRNA goes into the cytoplasm
- The ribosomes translate it into proteins

(8) These proteins increase


- the sensitivity of the G protein-coupled adrenergic receptors of the cell

 The overall effect of norepinephrine on the vessels is
 - The overall effect of norepinephrine on the vessels is glycogenolysis
 - The conversion of glycogen into glucose

(9) Cortisol

- Directly stimulates glycogenesis • The conversion of glucose into glycogen
- Indirectly stimulates glycogenolysis
 - The conversion of glycogen into glucose
 - By increasing the sensitivity of the adrenergic receptors for norepinephrine

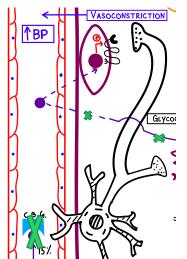
(D) EFFECTS ON THE BLOOD VESSELS

(1) Cortisol enhances

• the sympathetic nervous system

- Acts on many different tissues sensitive to norepinephrine o There are **adrenergic receptors** in the smooth
 - muscle cells within the tunica media of the vessels
 They bind norepinephrine

(2) As a steroid hormone


- cortisol passes through the lipid bilayer of the cell membrane
- Binds to an intracytosolic receptor o Activates it

(3) The activated receptor activates specific genes

- expressed in the nucleus
- Those genes are transcribed
- Producing mRNA
- mRNA goes into the cytoplasm
 - $_{\odot}$ The ribosomes translate it into proteins

(4) These proteins increase

- the sensitivity of the G protein-coupled adrenergic receptors of the cell
 - The overall effect of norepinephrine on the vessels is vasoconstriction
 - \rightarrow \uparrow resistance in the blood vessels
 - \rightarrow \uparrow blood pressure
 - $_{\odot}$ Cortisol amplifies the vasoconstriction

Figure 6 Effects of cortisol on the vessels.

(E) EFFECTS ON THE IMMUNE SYSTEM

(1) Cortisol can inhibit specific processes

- inside the immune cells
 - o Basophils are responsible for secreting
 - Histamines
 - Leukotrienes
 - Prostaglandins
 - Lymphocytes and monocytes are responsible for secreting
 - Interleukins
 - (IL1, IL2, IL4, etc.)
 - Cytokines
- This is the inflammatory immune response
 - Cortisol inhibits it
 - By preventing the immune cells from producing those chemicals

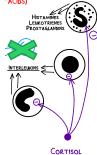


Figure 7 Effects of cortisol on the immune system.

IV) STIMULI

(1) Hypoglycemia

- is one of the main stimuli of cortisol • Low blood glucose levels
- In response to it cortisol
 - Indirectly stimulates glycogenolysis
 - The conversion of glycogen into glucose
 - By increasing the sensitivity of adrenergic receptors to norepinephrine
 - o Directly stimulates gluconeogenesis
 - The production of glucose from non-carbohydrate sources.
 - o Directly stimulates glycogenesis
 - The conversion of glucose into glycogen

(2) Long term (chronic) stress

- is another stimulus
 - May be caused by trauma or starvation
- Long term stress causes a direct release of CRH → excessive release of ACTH
 - \rightarrow \uparrow production of cortisol
- In response cortisol
 - ↑ the sensitivity of adrenergic receptors for NE in the smooth muscle cells of the vessels
 - \rightarrow Vasoconstriction
 - \rightarrow \uparrow blood pressure
 - \rightarrow allows the cells to get more nutrients,
 - glucose, amino acids, etc.
 - o ↑ muscle catabolism
 - Provides nutrients
 - o Depresses the immune system

• <u>GLYCOGENOLYSIS (INDIRECTLY)</u> - TSENSITIVITY TO NE

- GLUCONEOGENESIS
- GLYCOGENESIS (DIRECT EFFECT)

PROTEIN CATABOLISM, BLOOD PRESSURE, DEPRESSES IMUNE SYSTEM Figure 8 Responses of cortisol to stimuli.

• Preparing for finals is a type of long term stress

- \circ Due to it the immune system is depressed and
- microorganisms can cause damage (infections)
- $_{\odot}$ That's why people tend to get sick before finals
- Cortisol is used to treat leukemia
 - It depresses the bone marrow and inhibits the white blood cells
 - Prevents the already formed cells from producing inflammatory cytokines

V) FEEDBACK

↑ levels of cortisol in the blood ○ Exert a negative feedback on the hypothalamus

- \rightarrow \downarrow the production of CRH $_{\odot}$ Inhibit the adenohypophysis production of ACTH
- \rightarrow \downarrow the production of cortisol
- ↓ levels of cortisol in the blood
 - Not enough is going to the hypothalamus and the adenohypophysis to exert an inhibitory effect
 - The nuclei are stimulated to produce more CRH
 - The pituitary is stimulated to produce more ACTH
 - The synthesis of cortisol is stimulated

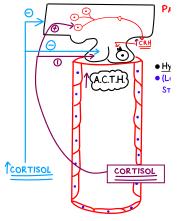


Figure 9 Feedback of cortisol.

VI) REVIEW QUESTIONS

1) What is the inner layer of the adrenal gland?

- a) Zona glomerulosa
- b) Zona fasciculata
- c) Zona reticularis
- d) None of the above

2) What does zona fasciculata secrete?

- a) Cholesterol
- b) Aldosterone
- c) Progesterone
- d) Cortisol

3) How does the low level of cortisol affect ACTH production?

- a) Stimulates ACTH production
- b) Inhibits ACTH production
- c) Both
- d) Neither

4) Which of the following is an effect of cortisol?

- a) Protein synthesis
- b) Decrease in blood pressure
- c) Immunosuppression
- d) Stimulating glycolysis

5) What is the effect of cortisol on the liver?

- a) Stimulating gluconeogenesis
- b) Stimulating glycogenesis
- c) Inhibiting glycogenesis
- d) a) + b)

6) How does cortisol affect the blood vessels?

- a) Increases the sensitivity of the adrenergic receptors of the cells
- b) Vasoconstriction
- c) ↑ blood pressure
- d) Everything of the above

7) What are the main stimuli of cortisol secretion?

- a) Chronic stress
- b) Hypoglycemia
- c) a) + b)
- d) Hyperglycemia

8) How does the high level of cortisol affect CRH production?

- a) Stimulates CRH production
- b) Inhibits CRH production
- c) Both
- d) Neither

9) Which of the following as a WRONG effect of cortisol on the human organism?

- a) Direct stimulation of glycogenolysis
- b) Vasoconstriction
- c) Protein catabolism
- d) Immunosuppression

10) Having in mind the effects of cortisol, in which cases we can use it for treatment?

a) Autoimmune disorders

- b) Leukemia
- c) Allergic reactions
- d) Everything is true

CHECK YOUR ANSWERS

VII) REFRENCES

Use style "Ref"

(example)

 APA citation guide. (2016). http://www.bibme.org/citationguide/apa/

• Lipson, C. (2011). Cite right: A quick guide to citation styles – *MLA, APA, Chicago, the sciences, professions, and more* (2nd ed). United States of America: The University of Chicago Press, Ltd., London.

• Ferraro, A. (Photographer). (2014). Liberty enlightening the world [digital image]. Retrieved from

https://www.flickr.com/photos/afer92/ 14278571753/in/set-72157644617030616

