4- O2-Hb dissociation curve, shift & significance By **Prof. Sherif W. Mansour**

Physiology dpt., Mutah school of Medicine. 2023/2024

Oxygen Transport by Blood

* <u>O₂ is carried by blood in two forms</u>:

1) O₂ in physical solution: <u>Nature</u>: O₂ molecules dissolved in blood.

- <u>Volume</u>: it depends on O₂ tension according to <u>Henery's law</u>: (dissolved O₂ = PO₂ x 0.003). So, In arterial blood (with tension of 100 mmHg) = 0.3 ml/100 ml. and in venous blood (with tension 40 mmHg) = 0.13 ml/100 ml
- <u>Importance</u>: 1) It determines O_2 tension in the blood. 2) It is easy to be used by the tissue.
- 3) It determines the rate and direction of O_2 diffusion. 4)It determines the percentage saturation of haemoglobin with O_2 .

2) <u>O₂ chemical form:</u>

- <u>Nature</u>: O₂ combines with the iron of haemoglobin while still in the ferrous state (It is called oxygenation not oxidation of Hb).
 Hb combines with O₂ in steps HbO₂, HbO₄, HbO₆, and HbO₈
- <u>Volume</u>: **19** ml $O_2/100$ ml **arterial blood**. **14 ml** $O_2/100$ ml **venous blood** (at rest)
- <u>Importance</u>: it is the main O₂ supply to tissues (however, the tissue utilize physical O₂ at first then chemical form)

O₂ -Dissociation Curve of Hemoglobin

- <u>Definition</u>: O_2 dissociation curve shows relationship between O_2 tension and percentage saturation of Hb at different O_2 tensions (Because the percentage saturation is not varied according to Hb. content in different persons).
- <u>Method</u>: 3 ml of blood in **Tonometer** are allowed to form thin layer on the wall and then exposed to different O₂ tensions and % saturation is calculated and plotted against the O₂ tensions in a cu

Physiological significance of the curve:

(a) At the lung and arterial blood: If the blood is exposed to:

- O_2 tension of <u>100 mmHg</u> (normal alveolar O_2 tension) \rightarrow **95%** saturation .
- O_2 tension of <u>70 mmHg</u> (alveolar tension at high altitude or diseased lung) \rightarrow 90% saturation.
- So change of O_2 tension from 100 to 70 mmHg \rightarrow mild change of % saturation. So the curve <u>is nearly</u> <u>horizontal</u> and saturation is easy and complete even with low O_2 tension at the lung to bind with more oxygen and carry it to tissue indicating that Hb has high affinity to O_2 at lungs.

(b) At the tissue and venous blood: If the blood is exposed to:

- O_2 tension of <u>40 mmHg</u> (resting muscle& venous blood tension) \rightarrow **70**% saturation.
- O_2 tension of <u>25 mmHg</u> (during exercise) \rightarrow **40**% saturation.
 - So, mild change in O_2 tension from 40 to 25 mmHg \rightarrow large decrease in saturation from 70 to 40% to give oxygen to tissue, so the curve <u>is nearly</u> <u>vertical (steep)</u> at tissue & venous side due to low affinity of Hb to O_2 at lower O_2 tension.
- Also pressure difference between arterial and tissue O₂ is high (100-40 = 60 mmHg) → loss of 25% (95-70 = 25%) of O₂ carried by Hb at rest.

(c) The curve is sigmoid or "S" shaped: because Hb contains 4 ferrous atoms and each one is saturated at certain O_2 tension & saturation of each one facilitates of the following one and so on .As there are 2 states of Hb: (1) Tense or "T" state when Hb gives O_2 , the " β " chains moves a part with decrease O_2 binding. (2) Relaxed or "R" state when Hb take O_2 the β chains move closer and favors more O_2 binding.

- <u>Bohr Effect</u>: it is the decrease in O_2 affinity to hemoglobin when pH of the blood falls(Acidic) . It can be attributed to the fact that reduced HB binds H⁺ more actively than does oxyhemoglobin which causes unloading of O2 more easily.

i.e at lung level ($\checkmark Co_2 \& H^+$) $\rightarrow \uparrow Hb$ affinity to O_2 , and at tissue level ($\uparrow Co_2 \& H$) $\rightarrow \checkmark Hb O_2$ affinity to give it to tissue.

<u> O_2 -Hb curve</u> isn't between O_2 tension and O_2 content as this content is variable from person to other according to amount of hemoglobin. However, the percentage saturation isn't varied from one to another.

Shift of the O₂ dissociation curve

Shift to right	Shift to left
Meanings:	
It means that at any O_2 tension the Hb is	It means that at any O_2 tension the Hb is
less saturated with O_2 and give O_2 to tissue	more saturated with O_2 so give less O_2 to
$(\downarrow \text{ affinity or unloading})$	tissue (1 affinity or loading)
	· · ·
Causes:	
(1) decrease O_2	(1) increase O_2
(2) increase Co_2 (Bohr's	(2) decrease Co_2
effect)	
(3) increase H^+ (acidosis or	(3) decrease H ⁺ (alkalosis)
↓pH)	
(4) increase temperature	(4) decrease temperature
(fever)	
(5) increase 2,3 DPG.	(5) decrease 2.3 DPG
(6) Pregnancy	(6) Fetal Hemoglobin
(7) Exercise	(7) CO poisoning
(8) Anemia.	(8) Polycythemia
Significance	
This increase O_2 supply to active muscle	This increases Onloading on Hb at the lung
during exercise.	This increases O_2 loading on the at the fully.

(1) Effect of 2,3 DPG:

- 2,3 Diphosphoglycerate is formed in RBCs by **anaerobic glycolysis**, and combines to the reduced Hb leading to \checkmark Hb affinity to O_2 . 2,3 DPG increased in anemia, muscular exercise, high altitude, increase in thyroid hormone(hyperthyroidism), growth hormones and androgens and in chronic hypoxia $\rightarrow \uparrow O_2$ supply to tissue
- but in a stored blood $\rightarrow \downarrow 2,3 DPG \rightarrow \downarrow O_2$ supply to tissue of recipient. Also acidosis depress glycolysis and decrease 2,3DPG.

(2) Effect of fetal Hb in newly born:

-Adult Hb contains pair of (α) and pair of beta (B) polypeptides which combine with 2,3 DPG $\rightarrow \checkmark$ Hb affinity to O_2 .

-Fetal Hb contains pair of alpha (α) and pair of gamma (γ) which can't combine with 2,3 DPG so $\rightarrow \uparrow$ Hb affinity to O_2 . This facilitates movement of O_2 from mother to fetus and keeps high O_2 in fetal Hb to be used under need.

(3) Effect of muscular exercise:

- Muscular exercise increases O_2 supply to tissue (muscles) by 50 times by the followings:
- 1- \uparrow cardiac output by 6 times (from 5 to 30 L/min).
- 2- *VD of blood vessels of skeletal muscles (sympathetic and metabolic)* $\rightarrow \uparrow O_2$ *supply by 3 times.*
- 3- \uparrow coefficient of O_2 utilization by muscles, the muscle take 15 ml O_2 from total 19 ml $O_2/100$ ml of arterial blood due to ($\downarrow O_2$ in tissue & shift of O_2 dissociation curve to Rt. as before) $\rightarrow \uparrow O_2$ supply by 3 times.
- * In untreated diabetes and renal failure there are shift to right due to associated acidosis.

P50 of Hemoglobin & factors influencing

The P50 is the oxygen tension at which hemoglobin is 50% saturated. The normal P50 is 26.7 mm Hg.
Shifting the curve to the left or right has little effect on the SO2 in the normal range where the curve is fairly horizontal; a much greater effect is seen for values on the steeper part of the curve.

Shifting of the Oxy-hemoglobin dissociation curve:

- A right-ward shift increases P50 and lowers hemoglobin's affinity for oxygen, thus displacing oxygen from hemoglobin and releasing it to the tissues.
- A left-ward shift decreases P50 and increases hemoglobin's affinity for oxygen, thus reducing its availability to the tissues.

N.B: Met-hemoglobinemia causes a left-ward shift in the curve.

Thank You