Nephrotic Syndrome

Dr Salma Ajarmeh Associate professor of pediatrics Consultant Pediatric nephrologist

Proteinuria

Urine Dipstick test

urine dipstick test or R&M

- negative or trace (150 mg/L)normal
- 1+ (300 mg/L),
- 2+ (1000 mg/L),
- 3+ (3000mg/L),
- 4+ (20000 mg/L).

Proteinuria

- False-positive test results may be seen in patients with gross hematuria,
- contamination with antiseptic agents (chlorhexidine and benzalkonium chloride),
- urinary pH greater than 7.0
- False-negative test occur with dilute urine or when the predominant urinary protein is not albumin

Diagnosis Proteinuria

- A <u>positive dipstick</u> is considered if it reads +1 (300mg/L) or more in non concentrated urine
- A (24 hr) urine collection is the best method of quantitation of urinary protein

The <u>limit of normal protein excretion</u> in healthy children is 0.15 g/24 hr or

< 4 mg/m2/hr *in a 24h urine collection.*

Proteinuria in Children

- Abnormal protein excretion is defined as 4–40 mg/m2/hr,
- Nephrotic range is defined as more than 40 mg/m2/hr or 50mg/kg in 24h collection
 Other tests
- on a urine sample ; a <u>Upr/Ucr ratio :</u> Normal < 20mg/mmol or 0.2 mg/mg Nephrotic range > 200mg/mmol or 2 mg/mg

Causes of Proteinuria

TRANSIENT PROTEINURIA

Fever Exercise Dehydration Cold exposure Congestive heart failure Seizure Stress

Causes of Proteinuria

ORTHOSTATIC (POSTURAL) PROTEINURIA

GLOMERULAR DISEASES

Focal segmental glomerulosclerosis Mesangial proliferative glomerulonephritis Membranous nephropathy Membranoproliferative glomerulonephritis Lupus nephritis IgA nephropathy Henoch-Schönlein purpura nephritis Amyloidosis Diabetic nephropathy

Causes of Proteinuria

TUBULAR DISEASES

Cystinosis Wilson disease Lowe syndrome Galactosemia **Tubulointerstitial nephritis** Heavy metal poisoning Acuté tubular necrosis Renal dysplasia Polycystic kidney disease Reflux nephropathy

NEPHROTIC SYNDROME

Nephrotic Syndrome

It *is characterised by*

- Heavy proteinuria (>3.5 g/24 hr in adults or >40 mg/m2/hr in children),
- Hypoalbuminemia (<2.5 g/dL),
- Edema
- Hyperlipidemia.

Etiology

(90%) of nephrotic syndrome in children is a form of the

idiopathic nephrotic syndrome (INS)

while (10%) is secondary.

INS

Idiopathic NS

- is glomerular diseases intrinsic to the kidney and not related to systemic causes
- incidence is 2–3/100,000
- Minimal change disease (85%)
- Mesangial proliferation (5%),
- Focal segmental glomerulosclerosis (10%).

secondary NS are related to other GN

- Membranoproliferative GN (MPGN)
- Membranous nephropathy

Secondary Nephrotic Syndrome

- Patients usually aged > 8 yr
- Hypertension, hematuria, renal dysfunction,
- extrarenal symptomatology (rash, arthralgias)
- Iow serum complement levels

Secondary Nephrotic Syndrome

- Causes :
- <u>GN</u>

lupus nephritis LN, Henoch-Schönlein nephritis Postinfectious glomerulonephritis

Secondary Nephrotic Syndrome

- Infections: malaria and schistosomiasis hepatitis B virus, hepatitis C virus, and HIV.
- Drugs and Chemicals :

Membranous (penicillamine, captopril, gold, nonsteroidal anti-inflammatory drugs) Minimal Change disease (ethosuximide,, lithium)

- Malignancies :
 - Hodgkin Lymphoma, lung and GIT cancers

Pathophysiology of NS

Pathopysiology

Edema :

- An increase in permeability of the glomerular capillary wall, which leads to massive proteinuria and hypoalbuminemia
- Hypoalbuminemia causes a decrease in the plasma oncotic pressure ,and fluid transudation from the intravascular compartment to the interstitial space...leads to edema

Pathopysiology

Elevated Lipid levels (cholesterol, triglycerides) :

- Hypoalbuminemia stimulates generalized hepatic protein synthesis, including synthesis of lipoproteins.
- Lipid catabolism is diminished

Pathophysiology of proteinuria in renal disease

Proteinuria:

Exciting development in recent years in understanding the pathophysiology of nephrotic syndrome has occurred in the area of Podocyte biology and the glomerular filtration barrier.

The Glomerular Filtration Barrier

- fenestrated capillary endothelium,
 - extracellular basement membrane, and
- intercalated podocyte foot processes, connected by 35-45 nm slit diaphragms.

Pathopysiology

Nephrotic syndrome is associated with fusion (effacement) of podocyte foot processes.

This effacement of the podocytes long was thought to be a secondary phenomenon of nephrotic syndrome

Pathopysiology Genetics :-

Theories have shifted towards the podocyte as playing a primary role in the development of proteinuria. -The understanding of proteinuria expanded with insights into the **molecular biology** of the podocyte. -Various forms of INS associated with **mutations in podocyte genes**, with the slit-diaphragm and podocyte cytoskeleton proetiens (nephrin and podocin) -several gene mutations identified are involved in SRNS and Congenital NS (NPHS1, NPHS2, TRCP6, CD2AP, ACTN4); the glomerular basement membrane (LAMB2); mitochondria (COQ2); and transcription factors (WT1, LMX1B).⁷

Minimal Change Disease

MCD clinical picture

- 100% nephrotic
- 10-20% hematuria
- 10% hypertension
- Doesn't progress to end stage renal failure
- 90% response to steroids

Minimal Change Disease MCD

- It is more common in males than in females (2:1)
- Frequency 75% in children, 15% in adults
- appears between the ages of 2 6 yr
- Present with edema, which is initially noted around the eyes and in the lower extremities
- edema may become generalized, with the development of ascites, pleural effusions, and genital edema.
- <u>hypertension and gross hematuria are</u> <u>uncommon</u>

History

-edema

- -SOB, cough , chest pain
- -abdominal pain
- -diarreoha and vomiting
- -first presentation /relapse.....age at dx , trigger URTI ?
- -treatment and medications received
- -blood transfusions, infections (hep B,C)
- -arthritis , ulcers , skin rash
- -Hematuria
- -Headache and blurred vision

-general condition
-vital signs (BP ...orthosotatic changes)
-edema pitting
-cardiac and chest exam
-abdomen exam

Idiopathic NS

Differential diagnosis:

- protein-losing enteropathy,
- hepatic failure,
- congestive heart failure,
- Other chronic glomerulonephritis, and protein malnutrition

Investigations

-Urine R&M .. For protein and RBC

-24h urine collection or Upr/ucr ratio

- -Urine culture
- -Serum albumin
- -KFT
- -CBC
- -C3 and C4 level
- -HBV and HCV serology
- -ANA , DS-DNA and AsO titre if needed

Renal Biopsy is only needed with Atypical presentation: hematuria (gross) hypertension, renal insufficiency, hypocomplementemia age < 1yr or > 12yr

Diagnosis MCD summary

- Urinary protein excretion in the nephrotic range (exceeds 40 mg/m2/hr) in children
- microscopic hematuria may be present in 20% of children
- serum albumin is < 2.5 g/dL,
- Serum creatinine value is usually normal
- increased serum cholesterol and triglyceride
- C3 and C4 levels are normal.
- Renal biopsy is not required for diagnosis in most children with Idiopathic nephrotic syndrome ..(MCD)

Pathology *Minimal change disease*

Minimal change disease (85%):

light microscopy glomeruli appear normal or show a minimal increase in mesangial cells and matrix.

Immunofluorescence : are negative, **Electron microscopy** simply reveals effacement of the epithelial cell foot processes.

Pathology

Focal segmental glomerulosclerosis (10% of total cases)

glomeruli show mesangial proliferation and segmental scarring on light microscopy .

immunofluorescence microscopy shows IgM and C3 staining.

Electron microscopy shows segmental scarring of the glomerular tuft with obliteration of the glomerular capillary lumen.

Pathology

Mesangial proliferation

diffuse increase in mesangial cells and matrix on light microscopy.

Immunofluorescence microscopy shows mesangial IgM and/or IgA staining.

Electron microscopy reveals increased numbers of mesangial cells and matrix as well as effacement of the epithelial cell foot processes.

TREATMENT

- Education of the family
- Salt and sodium restriction in acute illness
- May use diuretics
- Admission : for those with severe edema, pleural effusion , ascites and scrotal swelling
- Follow daily urine protein and weight

Medications :

- -Intravenous administration of 25% Albumin
- -Steroids

-other immunesuppressive medications eg(cyclophosphamide, cyclosporin)

Steroid therapy:

can be initiated in children with typical nephrotic presentation within the ages of 2-8 years **without renal biopsy**

Steroid treatment

- Given in dose of 60 mg/m2/day or 2mg/kg/day (maximum daily dose, 60 mg), divided into two to three doses for 4-6 consecutive weeks
- After response the dose will be tapered to EOD dose for another 3 months.
- 80-90% of patients with MCD will respond to steroid , and will do so within the first 4 weeks of treatment (called SSNS)

Steroid Treatment .. response

- Responsive to steroid : Urine trace or negative for protein for 3 consecutive days. Those who respond in the first 28 days are called SSNS
- Steroid Resistant SRNS : those who continue to have proteinuria (2+ or greater) after full 6 wks of proper steroid therapy
- **Relapse** : 3–4+ proteinuria and edema for >3 days
- Steroid Dependent: relapse while on taper alternate-day steroid therapy or within 14 days of stopping prednisone therapy
- Frequent Relapser: those who have 4 or more relapses in 12 months

- All patients with steroid resistant nephrotic syndrome *require a kidney biopsy*
- Causes
 - FSGS
 - MCD
 - MPGN (mesangiocapillary) GN
 - Membranous
 - DMS (diffuse meningeal proliferation)
 - Congenital Nephrotic Syndrome

SRNS other than MCD has poor outcome and usually progress to ESRD

Steroid-dependent patients, frequent relapser, and SRNS are candidates for other types of therapy:

- Cyclophosphamide (SSNS frequent relapser)
- High dose IV Methypredinson
- Cyclosporine
- Tacrolimus
- MMF
- Rituximab
- Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II blockers

COMPLICATIONS

 Drug Side Effects:
 Steroids : (cushingoid appearance, hypertension, cataracts, and/or growth failure)

Cyclophosphamide (neutropenia, disseminated varicella, hemorrhagic cystitis, alopecia, sterility

 Ciclosporin (hypertension, nephrotoxicity, hirsutism, and gingival hyperplasia, neutropenia)

Infections

- Infection is the major complication of nephrotic syndrome
- Increased susceptibility to bacterial infections owing to urinary losses of immunoglobulins and properdin factor B, defective T cell-mediated immunity, immunosuppressive therapy, malnutrition, edema.....

- Spontaneous bacterial peritonitis is the most frequent type of infection, although sepsis, pneumonia, cellulitis, and urinary tract infections may also be seen.
- Streptococcus pneumoniae is the most common organism causing peritonitis, gramnegative bacteria such as *Escherichia coli* may also cause it

Vaccines

- Patients with nephrotic syndrome who are receiving treatment are not immunocompetent, so they should receive polyvalent_pneumococcal vaccine, and given varicella vaccine when in remission,
- Influenza vaccine should be given on a yearly basis.

Thrombosis

- Increased risk of thromboembolic events, both arterial and venous,
- renal vein thrombosis, pulmonary embolus, sagittal sinus thrombosis, and thrombosis of indwelling arterial and venous catheters

- thrombosis is related to increased prothrombotic factors (fibrinogen, thrombocytosis, hemoconcentration, relative immobilization) and decreased fibrinolytic factors (urinary losses of antithrombin ill, proteins C and S)
- Prophylactic anticoagulation is not recommended in children unless they have had a previous thromboembolic event

PROGNOSIS

Prognosis

- The disease is not inherited
- The child will remain fertile unless cytotoxic drugs are used
- Children with MCD usually don't progress to end stage renal failure
- When in remission there is no need for diet or activity restriction, or dipstick follow-up

Prognosis

- <u>90-95% of patients</u> with MCD will respond to steroids
- Approximately 50% of patients with mesangioproliferative respond to corticosteroid therapy.
- Only 30% of patients with FSGS respond to prednisone.
- <u>70% of SSNS will have a relapsing course</u>:
 50% will be frequent relapser or steroid dependent
- 80% will go into long remission during childhood

Thank You