Chemistry

Chapter 1

Chemical Foundations

Section 1.3 Units of Measurement

The Fundamental SI Units

Physical Quantity
Mass
Length
Time
Temperature
Electric current
Amount of substance
Luminous intensity

Name of Unit
Abbreviation
kilogram meter m
second S
kelvin
ampere
mole
candela

Section 1.3 Units of Measurement

Prefixes Used in the SI System

- Prefixes are used to change the size of the unit.

Table 1.2 | Prefixes Used in the SI System (The most commonly encountered are shown in blue.)

Prefix	Symbol	Meaning	Exponential Notation
exa	E	$1,000,000,000,000,000,000$	10^{18}
peta	P	$1,000,000,000,000,000$	10^{15}
tera	T	$1,000,000,000,000$	10^{12}
giga	G	$1,000,000,000$	10^{9}
mega	M	$1,000,000$	10^{6}
kilo	k	1,000	10^{3}
hecto	h	100	10^{2}
deka	da	10	10^{1}
-	-	1	10^{0}

[^0]
Section 1.3

Units of Measurement

Prefixes Used in the SI System

Table 1.2 | Prefixes Used in the SI System (The most commonly encountered are shown in blue.)

			Meaning
Prefix	Symbol	0.1	Notation*
deci	d	0.01	10^{-1}
centi	c	0.001	10^{-2}
milli	m	0.000001	10^{-3}
micro	μ	0.000000001	10^{-6}
nano	n	0.000000000001	10^{-9}
pico	p	0.000000000000001	10^{-12}
femto	f	0.00000000000000001	10^{-15}
atto	a	10^{-18}	

*See Appendix 1.1 if you need a review of exponential notation.
oCengage Leerning. AI Aights Peserved.

Section 1.3
 Units of Measurement

Exponential Notation (scientific notation)

- Example 5000.: 5.000×103 4 S.F
- $5000: 5 \times 10^{3}$
- $381000000000000000=3.81 \times 10^{17}$
- $0.000000000914=9.14 \times 10^{-10}$
- 5.00×103 3 S.F
- 300. written as 3.00×10^{2}
- Contains three significant figures.
- Two Advantages
- Number of significant figures can be easily indicated.

Section 1.3

Units of Measurement

Exponential Notation and Significant Figures:

- 90000
- 90000.
- 9.0000×10^{4}
- 9.0×10^{4}
- 9.00X104
- 65100000000000000
- 0.00000000000002710
- () x 10^{x}

$$
\begin{gathered}
1 \text { S.F } \\
5 \text { S.F } \\
5 \text { S.F } \\
2 \text { S.F } \\
3 \text { S.F }
\end{gathered}
$$

6.51×10^{15}
3 S.F
2.710×10^{-17}
4 S.F

Section 1.5

Significant Figures and Calculations

Measurement of Volume Using a Buret

- The volume is read at the bottom of the liquid curve (meniscus).
- Meniscus of the liquid occurs at about 20.15 mL .
- Certain digits:20.15
- Uncertain digit: 20.15

Section 1.5

Significant Figures and Calculations

Rules for Counting Significant Figures

1. Nonzero integers always count as significant figures.

- 3456 has 4 sig figs (significant figures).

300000

Section 1.5

Significant Figures and Calculations
Rules for Counting Significant Figures
2. There are three classes of zeros.
a. Leading zeros are zeros that precede all the nonzero digits. These do not count as significant figures.

- 0.0000048 has 2 sig figs.

Section 1.5

Significant Figures and Calculations

Rules for Counting Significant Figures
b. Captive zeros are zeros between nonzero digits. These always count as significant figures.

- 16.07 has 4 sig figs.
- 0.008073 s.f.
- 2.000020019 s.f.

Section 1.5

Significant Figures and Calculations

Rules for Counting Significant Figures
c. Trailing zeros are zeros at the right end of the number. They are significant only if the number contains a decimal point.

- 9.300 has 4 sig figs.
- 150 has 2 sig figs.
- 231000003 s.f.
- 4100700005 s.f.
- 4.100700009 s.f.
$50 \cap \quad 2 c f$

Section 1.4
 Uncertainty in Measurement

Precision and Accuracy

Accuracy

- Nearness of the measurements to the true value.

Precision

- Nearness of the measurements to each other.

Section 1.4

Uncertainty in Measurement

Precision versus Accuracy

Neither accurate nor precise.

- Cengage Learning. All Rights Reserved.

Precise but not accurate.

Section 1.8
 Temperature

Three Systems for Measuring Temperature

- Fahrenheit

Celsius
Kelvin

Section 1.8

Temperature

The Three Major Temperature Scales

Section 1.8

Temperature

Converting Between Scales

$$
\begin{array}{ll}
T_{\mathrm{K}}=T_{\mathrm{C}}+273.15 & T_{\mathrm{C}}=T_{\mathrm{K}}-273.15 \\
T_{\mathrm{C}}=\left(T_{\mathrm{F}}-32^{\circ} \mathrm{F}\right) \frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}} & T_{\mathrm{F}}=T_{\mathrm{C}} \times \frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}+32^{\circ} \mathrm{F}
\end{array}
$$

Section 1.8

Temperature

Example

- What is the F equivalent of $35^{\circ} \mathrm{C}$?
$35{ }^{\circ} \mathrm{C} \times 9 / 5+32=95^{\circ} \mathrm{F}$
- What is the equivalent of $151^{\circ} \mathrm{F}$ in K ?

First convert into ${ }^{\circ} \mathrm{C}$ then to K .
${ }^{\circ} \mathrm{C}: \quad(151-32) \times 5 / 9=66.1^{\circ} \mathrm{C}$
K: $\quad 66.1+273.15=339.3 \mathrm{~K}$

Section 1.8
 Temperature

EXERCISE!

At what temperature does ${ }^{\circ} \mathrm{C}={ }^{\circ} \mathrm{F}$?

Section 1.8
 Temperature

EXERCISE!

- Since $^{\circ}$ C equals ${ }^{\circ}$ F, they both should be the same value (designated as variable x).
- Use one of the conversion equations such as:

$$
T_{\mathrm{C}}=\left(T_{\mathrm{F}}-32^{\circ} \mathrm{F}\right) \frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}}
$$

- Substitute in the value of x for both T_{C} and T_{F}. Solve for x.

Section 1.8

Temperature

EXERCISE!

$$
\begin{aligned}
T_{\mathrm{C}} & =\left(T_{\mathrm{F}}-32^{\circ} \mathrm{F}\right) \frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}} \\
x & =\left(x-32^{\circ} \mathrm{F}\right) \frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}} \\
x & =-40
\end{aligned}
$$

$$
\text { So }-40^{\circ} \mathrm{C}=-40^{\circ} \mathrm{F}
$$

[^0]: © Cengage Learning. All Rights Reserved.

