



# **Chemical Foundations**



# The Fundamental SI Units

| <u>Physical Quantity</u> | <u>Name of Unit</u> | <u>Abbreviation</u> |
|--------------------------|---------------------|---------------------|
| Mass                     | kilogram            | kg                  |
| Length                   | meter               | m                   |
| Time                     | second              | S                   |
| Temperature              | kelvin              | K                   |
| Electric current         | ampere              | А                   |
| Amount of substance      | mole                | mol.                |
| Luminous intensity       | candela             | cd                  |



### Prefixes Used in the SI System

• Prefixes are used to change the size of the unit.

 Table 1.2
 Prefixes Used in the SI System (The most commonly encountered are shown in blue.)

| Prefix | Symbol | Meaning                   | Exponential<br>Notation* |
|--------|--------|---------------------------|--------------------------|
| exa    | E      | 1,000,000,000,000,000,000 | 1018                     |
| peta   | Р      | 1,000,000,000,000,000     | 1015                     |
| tera   | т      | 1,000,000,000,000         | 1012                     |
| giga   | G      | 1,000,000,000             | 10 <sup>9</sup>          |
| mega   | M      | 1,000,000                 | 106                      |
| kilo   | k      | 1,000                     | 10 <sup>3</sup>          |
| hecto  | h      | 100                       | 10 <sup>2</sup>          |
| deka   | da     | 10                        | 101                      |
|        |        | 1                         | 100                      |

© Cengage Learning. All Rights Reserved.



### Prefixes Used in the SI System

# Table 1.2 Prefixes Used in the SI System (The most commonly encountered are shown in blue.)

| Prefix | Symbol | Meaning                                 | Exponential<br>Notation* |
|--------|--------|-----------------------------------------|--------------------------|
| deci   | d      | 0.1                                     | 10-1                     |
| centi  | С      | 0.01                                    | 10-2                     |
| milli  | m      | 0.001                                   | 10-3                     |
| micro  | μ      | 0.000001                                | 10-6                     |
| nano   | n      | 0.00000001                              | 10-9                     |
| pico   | р      | 0.0000000001                            | 10-12                    |
| femto  | f      | 0.00000000000001                        | 10-15                    |
| atto   | а      | 0.0000000000000000000000000000000000000 | 10-18                    |

\*See Appendix 1.1 if you need a review of exponential notation.

Congage Learning. All Rights Reserved



Exponential Notation (scientific notation)

- Example 5000. : 5.000x10<sup>3</sup> 4 S.F
- $5000 : 5x10^3$
- $381000000000000 = 3.81 \times 10^{17}$
- $0.00000000914 = 9.14 \times 10^{-10}$
- 5.00X10<sup>3</sup> 3 S.F
  - 300. written as  $3.00 \times 10^2$
  - Contains three significant figures.
- Two Advantages
  - Number of significant figures can be easily indicated.



# Exponential Notation and Significant Figures:

| <b>90000</b>           | 1 S.F                    |       |
|------------------------|--------------------------|-------|
| <b>90000</b> .         | 5 S.F                    |       |
| 9.0000x10 <sup>4</sup> | 5 S.F                    |       |
| ■ 9.0x10 <sup>4</sup>  | 2 S.F                    |       |
| ■ 9.00X10 <sup>4</sup> | 3 S.F                    |       |
| 6510000000000000       | 6.51x10 <sup>15</sup>    | 3 S.F |
| • 0.0000000000002710   | 2.710 x10 <sup>-17</sup> | 4 S.F |
| ■ ( ) × 10×            |                          |       |

# Section 1.5 Significant Figures and Calculations

Measurement of Volume Using a Buret

- The volume is read at the bottom of the liquid curve (meniscus).
- Meniscus of the liquid occurs at about 20.15 mL.
  - Certain digits: 20.15
  - Uncertain digit: 20.15





- 1. Nonzero integers always count as significant figures.
  - 3456 has 4 sig figs (significant figures).

300000



- 2. There are three classes of zeros.
- a. <u>Leading zeros</u> are zeros that precede all the nonzero digits. These do not count as significant figures.
  - 0.0000048 has 2 sig figs.



- b. <u>Captive zeros</u> are zeros between nonzero digits. These always count as significant figures.
  - 16.07 has 4 sig figs.
  - 0.00807 3 s.f.
  - 2.00002001 9 s. f.



- <u>Trailing</u> zeros are zeros at the right end of the number. They are significant only if the number contains a decimal point.
  - 9.300 has 4 sig figs.
  - 150 has 2 sig figs.
  - 23100000 3 s.f.
  - -----
  - 410070000 5 s.f.
  - 4.10070000 9 s.f.
  - 500 3cf

Section 1.4 Uncertainty in Measurement



### Precision and Accuracy

#### Accuracy

• Nearness of the measurements to the true value.

#### Precision

• Nearness of the measurements to each other.

Section 1.4 Uncertainty in Measurement

# Precision versus Accuracy



Neither accurate nor precise. © Cengage Learning. All Rights Reserved.



Precise but not accurate.



Accurate and precise.





# Three Systems for Measuring Temperature

- Fahrenheit
- Celsius
- Kelvin



#### The Three Major Temperature Scales





**Converting Between Scales** 

$$T_{\rm K} = T_{\rm C} + 273.15$$
  $T_{\rm C} = T_{\rm K} - 273.15$ 

$$T_{\rm C} = \left(T_{\rm F} - 32^{\circ} {\rm F}\right) \frac{5^{\circ} {\rm C}}{9^{\circ} {\rm F}} \qquad T_{\rm F} = T_{\rm C} \times \frac{9^{\circ} {\rm F}}{5^{\circ} {\rm C}} + 32^{\circ} {\rm F}$$



# Example

What is the F equivalent of 35 °C?
 35 °C x 9/5 + 32 = 95 °F

- What is the equivalent of 151 °F in K?
   First convert into °C then to K.
  - °C: (151 − 32) x 5/9 = 66.1 °C
  - K: 66.1 + 273.15 = 339.3 K





#### At what temperature does $^{\circ}C = ^{\circ}F$ ?



#### EXERCISE!

- Since °C equals °F, they both should be the same value (designated as variable x).
- Use one of the conversion equations such as:

$$T_{\rm C} = \left(T_{\rm F} - 32^{\circ}{\rm F}\right) \frac{5^{\circ}{\rm C}}{9^{\circ}{\rm F}}$$

• Substitute in the value of x for both  $T_{\rm C}$  and  $T_{\rm F}$ . Solve for x.

#### EXERCISE!

$$T_{\rm C} = \left(T_{\rm F} - 32^{\circ}{\rm F}\right) \frac{5^{\circ}{\rm C}}{9^{\circ}{\rm F}}$$

$$x = \left(x - 32^{\circ}F\right)\frac{5^{\circ}C}{9^{\circ}F}$$

$$x = -40$$

So 
$$-40^{\circ}\text{C} = -40^{\circ}\text{F}$$

