PHARMACOKNETICS

Prepared by: Heba Ahmed Hassan Assistant professor of clinical pharmacology faculty of medicine, mutah university, JORDEN

Pharmacokinetics

what the body does to the drug?

- Absorption
- Distribution
- Metabolism
- Excretion.

EXCRETION OF DRUGS

- ► Kidney: most important organ for excretion
- **■** Excretion occurs through:

Glomerular filtration

 Proximal convoluted tubules (PCT)

 Distal convoluted tubules (DCT)

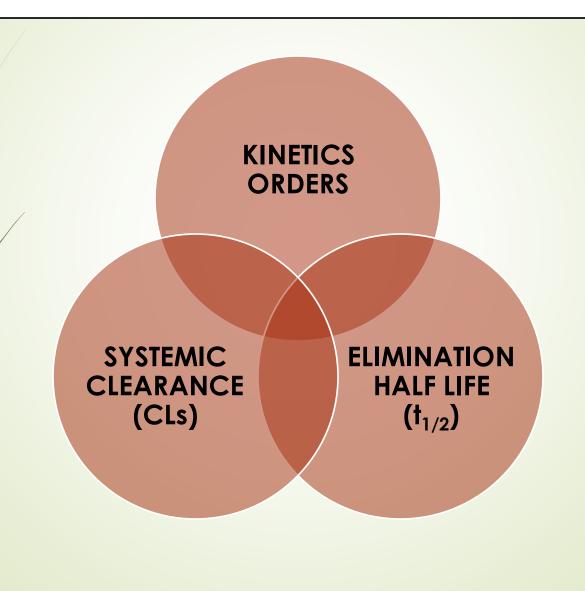
1-Glomerular filtration

All free drug molecules whose size is <u>less</u> than the glomerular pores are filtered into Bowman's capsule.

2-Proximal convoluted tubules (PCT)

Active secretion occurs either through

- □ acid carrier e.g. for penicillin, probenicid, salicylic acid.
- □ basic carrier for amphetamine and quinine.

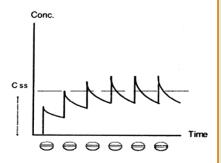

3-Distal convoluted tubules (DCT)

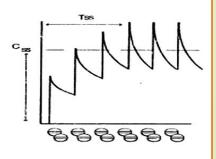
- Lipophilic drugs may be reabsorbed back to systemic circulation.
- ► *Alkalinization of urine* keeps acidic drugs ionized and increases their excretion.
- ► *Acidification of urine* keeps basic drugs ionized and increases their excretion.

Other sites of excretion:

- ➤ Bile: e.g. Doxycycline, azithromycin.
- Lungs e.g. Volatile anesthetics.
- **Saliva** e.g. Iodides.
- > Sweat e.g Rifampicin.
- ➤ Milk: this is important in lactating mothers.

PARAMETERS OF ELIMINATION


KINETICS ORDERS


First order kinetics

Zero order kinetics

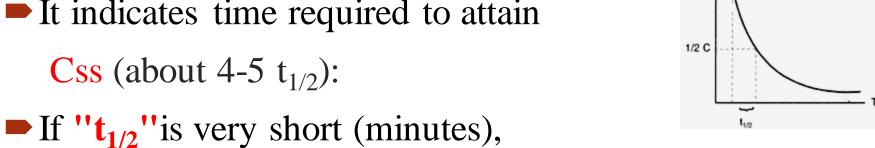
First order kinetics (most drugs):

- Rate of elimination is directly proportionate to the blood concentration of drugs (*constant percentage* of the drug is eliminated per unit of time)
- **Constant** "t_{1/2}"
- Repeated dosing increases drug concentration and accordingly the rate of elimination increases till the rate of administration equals the rate of elimination.
- \blacksquare Css can be reached after 4-5 $\mathbf{t}_{1/2}$
- Css is directly proportionate to the dose.

 \uparrow dose $\rightarrow \uparrow$ Css

Zero order kinetics

(phenytion and salicylate)


- Rate of drug elimination is constant i.e. *constant amount* of drug is eliminated per unit of time.
- $-''t_{1/2}''$ (half life) is not constant.
- ■No Css is reached by repeated dosing.
- Any change of the dose may cause toxicity.
- Some drugs follow 1st order kinetics in small dose and zero order kinetic at large doses i.e. the elimination mechanism is said to be saturated (saturation kinetics).

ELIMINATION HALF LIFE (T_{1/2})

- It is the time required to reduce the plasma concentration of the drug to half the initial concentration (the time required for drug concentration to be changed by 50%).
- $T_{1/2} = 0.7 V_d / CLs$

Importance of elimination $T_{1/2}$:

- It determines the dosage interval (T).
- It indicates time required to attain Css (about 4-5 $t_{1/2}$):

the drug should be given by IV infusion [dopamine].

 \blacksquare If " $t_{1/2}$ " is long [digoxin], the drug should be administered in loading dose followed by maintenance dose

Factors affecting elimination " $t_{1/2}$ ":

- ☐ State of eliminating organs i.e. liver & kidney function.
- ☐ Delivery of drugs to the eliminating organs: affected by plasma protein binding and Vd of the drug.

SYSTEMIC CLEARANCE (CLs)

■ It is the volume of fluid cleared from the drug per unit of time.

Systemic $CLs = Renal\ clearance\ (CL_r) + non-$

renal clearance (CLnr)

Significance of clearance:

- □ Calculation of the maintenance dose
- Loading dose: The dose required to achieve a desired plasma concentration (desired Css) rapidly, followed by routine maintenance dose.

Loading dose = $Vd \times TC$

■ Maintenance dose: The dose given to maintain the desired Css.

Maintenance dose = $CLs \times TC$ tconcentration.

References:

- Lectures in pharmacology part (1) by staff members of clinical pharmacology dep. Faculty of medicine, zagazig university.
- Kadzung B.G., Masters S.B, and Trevor A.J. Basic & Clinical pharmacology 12th edition.
- Wilkins R,Cross S, Megson L and Meredith D (2011):Oxford
 Handbook of Medical Sciences Second Edition
- Tao Le, Vikas Bhushan Matthew Sochat, Yash Chavda,
 Kimberly Kallianos, Jordan Abrams, Mehboob Kalani and
 Vaishnavi Vaidyanathan (2019): FIRST AID for the USMLE Step
 1.
- Sandra K Looper Woodford and Linda P Adkison (2014):

