RS MODULE PHYSIOLOGY (LECTURE 9)

Hypoxia and Cyanosis

BY
Associate Professor
Dr. Fatma Farrag Ali

Hypoxia

Hypoxia

Decreased oxygen supply to tissues $(O_2$ deficiency at tissue level).

Hypoxaemia

Decreased oxygen <u>tension</u> in blood $(O_2$ deficiency in the blood).

Types of Hypoxia

- 1. Hypoxic hypoxia.
- 2. Anaemic hypoxia.
- 3. Stagnant hypoxia.
- 4. Histotoxic hypoxia.

I. Hypoxic hypoxia

It <u>means</u> decreased oxygen supply to tissues <u>secondary</u> to <u>defective</u> <u>oxygenation</u> of blood in the lungs (i.e. <u>hypoxaemia</u>).

Causes:

- 1. Breathing air containing less oxygen:
- . At the sea level in closed **badly ventilated spaces**.
- . At **high altitudes** due to low oxygen tension.
- 2. All factors interfering with ventilation:
- . Air way obstruction by a foreign body or bronchial asthma.
- . Paralysis of respiratory muscles e.g. poliomyelitis.
- . Chest wall injury or deformities as in rickets.
- The **presence of air** (i.e. pneumothorax) or fluid (i.e. hydrothorax, pyothorax, or haemothorax) in the **pleural cavity.**
- 3. Respiratory centre depression e.g. morphine toxicity.

- 4. Decreased lung perfusion e.g. thrombosis of pulmonary artery.
- 5. All factors interfering with pulmonary gas exchange (i.e. diffusion):
- Pulmonary edema
- Lung (pulmonary) fibrosis († thickness of pulmonary membrane).
- **Emphysema** (↓ surface of pulmonary membrane).
- 6. Right to left shunt as blood bypasses the lungs as in atrial septal and ventricular septal defects.

Blood Changes of hypoxic hypoxia:

Parameter	Arterial	Venous
O ₂ tension	Decreased	Decreased
O ₂ content	Decreased	Decreased

II. Anaemic hypoxia

It <u>means</u> decreased oxygen supply to the tissues <u>secondary to</u> <u>decreased haemoglobin</u> (Hb) content of blood or <u>impaired</u> <u>haemoglobin function</u>.

Causes:

- . Decreased Hb content as in all types of anaemia.
- Impaired Hb function (i.e. **abnormal Hb**); where Hb content is normal but Hb is unable to carry oxygen.
- **Examples of abnormal Hb**
 - Methemoglobin.
 - Sulphhemoglobin.
 - Carboxyhaemoglobin

Examples of abnormal Hb:

A. Methemoglobinaemia:

• The normal ferrous iron of Hb (ferrous protoporphyrin) is <u>oxidised</u> to ferric by nitrites or chlorates and hence, <u>cannot</u> give its oxygen to tissues.

B. Sulphhemoglobin:

Excessive <u>fermentation</u> and <u>putrefaction</u> of food in the gut as in <u>intestinal</u> <u>obstruction</u> \rightarrow formation of hydrogen sulphide (H₂S) \rightarrow absorbed and reacts with Hb to form sulphhaemoglobin which is <u>unable</u> to carry oxygen.

C. <u>Carboxyhaemoglobin: (in Carbon Monoxide; CO Poisoning)</u>

- CO combines with haemoglobin to form carboxyhaemoglobin at the same site of oxygen thus preventing oxygen carriage. It is **dangerous** because:
- a) The <u>affinity</u> of Hb for CO is <u>210</u> times that for oxygen.
- b) Carboxyhaemoglobin formed <u>shifts</u> the oxygen dissociation curve of the remaining oxyhaemoglobin to the <u>left</u> i.e. it <u>hardly gives</u> its oxygen to the tissues

Blood Changes of anaemic hypoxia

Parameter	Arterial	Venous
Oxygen tension	Normal	Decreased
Oxygen content	Decreased	Decreased

III. Stagnant hypoxia

<u>Definition</u>: Decreased oxygen supply to the tissues <u>secondary</u> to marked <u>decrease</u> of <u>blood</u> <u>flow</u> (blood stagnation) to the tissues.

Causes:

- Generalized: as in congestive heart failure or increased blood viscosity.
- Localized: as in obstruction of arterial blood supply to a limb by;
 - > Vasospasm as in Raynaud's disease.
 - > Thrombosis or embolism.

Blood Changes of stagnant hypoxia

Parameter	Arterial	Venous
Oxygen tension	Normal	Decreased
Oxygen content	Normal	Decreased

IV. Histotoxic hypoxia

Definition: decreased oxygen supply to the tissues <u>due to inability</u> of the tissues to <u>utilize</u> and so to <u>extract</u> oxygen from arterial blood secondary to <u>defect</u> in <u>oxidative enzymes</u> (e.g. dehydrogenase and cytochrome oxidase).

Causes:

- Cyanide poisoning: Cytochrome oxidase is blocked by cyanides
- Alcohol intoxication: Alcohol blocks the dehydrogenase enzyme.

Blood Changes of histotoxic hypoxia

Parameter	Arterial	Venous
Oxygen tension	Normal	Increased
Oxygen content	Normal	Increased

Cyanosis

Definition:

Bluish discoloration of skin and mucous membranes due to increased concentration of reduced haemoglobin more than 5 gm % the threshold for cyanosis) in the capillary blood.

In a normal healthy individual, the following occurs:

- Arterial blood haemoglobin is 97 % saturated with O_2 and 3 % only are unsaturated i.e. arterial blood reduced haemoglobin concentration = 15 x 3/100 = 0.45 gm % ... (A)
- Venous blood haemoglobin is 70% saturated with O_2 and 30 % unsaturated with O_2 i.e.
- Venous blood reduced haemoglobin concentration =

$$15 \times 30/100 = 4.5 \text{ gm } \% \dots (B)$$

Mean Capillary blood reduced haemoglobin concentration =

$$(A+B)/2 = (0.45 + 4.5)/2 = 4.95 = ~2.5 \text{ gm } \%$$

So, under <u>normal conditions</u>, no cyanosis occurs <u>since</u> the amount of reduced haemoglobin in the capillary blood (2.5 gm %) is <u>far below</u> the threshold of cyanosis (5 gm %).

Causes of cyanosis

- . All causes of hypoxic hypoxia.
- . All causes of stagnant hypoxia.
- . Asphyxia.

Types of cyanosis

A. Central Cyanosis:

- As in <u>hypoxic hypoxia</u>.
- It is <u>due to</u> defective oxygenation of blood in the lungs.

A. Peripheral Cyanosis:

- As in <u>stagnant hypoxia</u>.
- It is <u>due to</u> excessive uptake of oxygen by the tissues <u>especially</u> when the rate of blood flow is <u>decreased</u>.

Types of hypoxia not associated with cyanosis

. Histotoxic hypoxia: Because;

Both arterial and venous blood haemoglobin are <u>highly</u> saturated with O_2 so, capillary reduced haemoglobin concentration is <u>far below</u> the threshold for cyanosis.

- . Anaemic hypoxia: because;
- Haemoglobin content is **reduced**.

Effects of Hypoxia:

- The effects of hypoxia <u>depend on</u> the **onset** sudden acute or gradual chronic and the **alveolar** P_{02} level;
- Acute severe hypoxia is <u>fatal</u> within 5 minutes due to <u>direct</u> respiratory centre depression.
- <u>e.g.</u> When the pressure in the aeroplane cabin is <u>suddenly</u> lost while flying at (30.000 feet) as the alveolar Po₂ suddenly <u>drops</u> to **20 mm Hg.**

Acute mountain sickness:

A condition that occurs in individuals when ascend to high altitudes (20.000 feet) (alveolar P_{O2} < 40 mmHg).

Symptoms: headache, fatigue, irritability, insomnia, dyspnea, palpitation, anorexia, nausea and vomiting

Cause: Cerebral edema which occurs secondary to VD of cerebral blood vessels as a result of low arterial Po₂

Mechanism:

centres.

Cerebral Oedema <u>due to</u> O_2 lack \rightarrow cerebral arteriolar vasodilatation $\rightarrow \uparrow$ cerebral capillary pressure \rightarrow brain oedema \rightarrow excitation of brain

Pulmonary Oedema:

Mechanism:

• O_2 <u>lack</u> \rightarrow pulmonary arteriolar <u>vasoconstriction</u> \rightarrow \uparrow pulmonary blood pressure (i.e. pulmonary hypertension) \rightarrow \uparrow pulmonary capillary pressure \rightarrow \uparrow <u>capillary permeability</u> \rightarrow <u>pulmonary oedema</u>.

Acclimatization

The adaptive mechanisms that occur in high altitudes (10.000 feet) (on prolonged exposure to low O_2 pressures, alveolar Po_2 decreases to 60 mm Hg) (chronic mountain sickness).

Acclimatization Mechanisms:

Compensatory mechanisms involved in acclimatization aim at increasing O_2 delivery to tissues.

They include the following:

1. Respiratory effects:

Alveolar Po₂ decreases to 60 mm Hg resulting in;

<u>Hyperventilation</u> (\uparrow rate and \uparrow depth of breathing) <u>due to</u> stimulation of the respiratory centre through the <u>peripheral chemoreceptors</u>.

Hyperventilation $\rightarrow \downarrow$ blood $CO_2 \rightarrow \underline{alkalosis}$ which can be $\underline{corrected}$ by increased bicarbonate secretion in urine.

2. Increase of the blood O_2 -carrying capacity

This occurs as a result of erythropoiesis under effect of erythropoietin hormone (which is secreted by kidney in response to hypoxia). The RBCs count increases (physiological polycythaemia).

3. Circulatory changes:

Peripheral chemoreceptors stimulate the vasomotor centre resulting in **tachycardia** and **increase** of both **cardiac output and arterial blood pressure**. In addition, **peripheral VD** also occur under effect of hypoxia to increase oxygen supply to tissues.

4. Increase of O₂ liberation at the tissues

This is produced through stimulation of 2,3 DPG synthesis in RBCs at high altitudes which facilitates O_2 liberation from HbO₂ by shifting O_2 -Hb dissociation curve to the right.

 \uparrow 2,3-DPG in RBCs \rightarrow shift of O₂ dissociation curve to the <u>right</u> and antagonizes the effect of alkalosis.

5. Cellular compensatory changes

In response to low arterial Po₂, all the following increase in cells:

- The mitochondria.
- The myoglobin content in skeletal muscles.
- The oxidative enzymes (especially cytochrome oxidase enzyme)

