

Epidemiology
 L VI
 23-10-2023

Part 1

Prof DR. Waqar AI - Kuibaisy

17-10-2022

Epidemiology: Definition

"The study of distribution and determinants of health-related states or events in specified populations, and the application of this study to control health problems"

Study: includes surveillance, observation,
hypothesis testing, analytic research, and experiments.

Distribution: Refers to analysis by time, place, and classes of persons affected.

Determinants: All the physical, biological, social, cultural, and behavioral factors that influence health.

Aims of epidemiological study:-

1 Controlling or preventing the spread of disease. preventing re-occurrence of disease.
2- Preventing the introduction of disease not present in the community.
3- Eradicating disease already present.
4- Detecting means for promoting health \& efficiency of the population in a community

Uses of Epidemiology:-
1-To Describe the distribution $\&$ size of diseases in human population. Age, sex social class.....
2- To Identify etiological factors in the pathogenesis of disease 3- To Provide the data essential for management.
4- To Evaluation and planning of services for the prevention \& control and treatment of disease

MEASURES OF DISEASE FREQUENCY

A prerequisite for any epidemiologic investigation is quantify the occurrence of disease.

The most basic \& simplest method of expressing disease frequency simple count. i $25 \quad \sigma^{\pi} 10$ However
count data alone have very limited utility for epidemiologists.
No. of student with Tuberculosis(TB)
$=20$ school A
$=30$ school B ????????
\square To know distributions and determinants of disease it is also necessary to know

The size of the population

TB=20 school A TB= 30 school B

-100 School A
 200 School B

$q \mathbf{2 5}$ $\bigcirc 10$

The time period during which the data were collected

Such measures allows direct comparisons of disease frequencies in two or more groups of individuals.

> | Rate |
| :--- |
| Ratios |
| Proportion |
| percentage |

Rate

Is the measure of an event, condition (disease, disability or death) with a unit population and within a time period.
$20 / 100$ school A
30/200 school B

$$
\begin{array}{|ll}
\hline \text { Q } & \mathbf{2 5} / \mathbf{2 0 0} \\
\hline
\end{array}
$$

\square Basic factors needed to develop rate are 3

$$
\frac{a}{a+b}
$$

1- Numerator (No. of individual affected, diseased 20 school A 30 school B
2-Denominator ;the total population of the study, the total No. of group among which the affected (diseased) persons are derived 3- Time period usually year

100	School	A
200	School	B

Rate derived by

$>$ Dividing the number of cases (the numerator) 20, or 30 by the
$>$ total number capable of experiencing the event (denominator, or population at risk)

$$
100 \text { or } 20020 / 100 \text { or } 30 / 200 \text { and }
$$

$>$ multiplying the result by 100,1000, or 10000 (constant)
Rate $=$ Number of cases X 100
Population of the area in specific time period
А.TB $=20 / 100 \times 100=$ or \quad В.TB $=30 / 200 \times 100=$
$\widehat{\gamma}=10 / 50 \mathrm{X} 100=20 \%$
$q=25 / 200 \mathrm{X} 100==12.5 \%$
in order to know how many cases accrued for that ${ }_{10}$ unitit of of population

Rate $=$ Number of cases X 100
Population of the area in specific time period
In Rate the №. of cases in numerator is

aa $+b$ subset of the population №. in denominator

Rate $=$ Number of TB cases in Jordan 2020 X 100000 Population of the Jordan in specific time period(2020

* Rates are expressed in term of population, also are expressed in term of subgroups. q or δ.

Rate $=$ № of TB cases among δ in Jordan 2020 X 100000 ${ }^{\lambda}$.Population in Jordan in specific time period (2020

Rate is defined as the number of cases defined / unit of
population / unit of time
-------------------------7/100000/year

There are 3 types of rates

Crud Rates

- Adjusted Rates

Specific Rates For subset or subgroup of total population
\square High rates as well as low rates provide useful information
spread,
transmission.
cause,

$$
\frac{a}{a+b}
$$

control measurements

$$
q=25 / 200 \times 100==12.5 \%
$$

Example $\quad \widehat{\lambda}=10 / 50 \mathrm{X} 100=20 \%$
TB is higher in males than females population in the same community so TB occurrence in males may related to Smoking, HIV ,drug abuse or any other factors
In Rate the No. of cases in numerator is subset of the population No. In denominator

Ratio

General definition of Ratio
is the relation in: number degree, or quantity existing between two independent groups
Ratio is the result of one quantity divided by another of a same kind

TB ratio school A/school B 20/30= 0.66: 1

TB ${ }^{\wedge}$ ratio to ?
10/25 $=0.4 \quad \widehat{\sigma} / q$

No. of student with (TB)
20 school A 30 school B

In Ratio the numerator is not part of the denominator population

Ratio

Is a relative No. that express the magnitude of one occurrence in relation to the other.
(2 independents Groups)
Ratio is less useful than rates in epidemiology ???? as the time element is missing, making the result more generalized finding
$>$ In Ratio the numerator is not included in the population defined by the denominator
$>20 / 30$
10/25

In Ratio the numerator is not part of the denominator population

Proportion \& percentage

The proportion

Is a relation between the amount, No., size or degree of one thing and the amount, size, No., or degree of another.

* In epidemiology
- a proportion is a ratio in which the numerator is included as part of denominator. ????
\star In strict definition the proportion must fall within the range of 0.0 to 1.0.
\square The impotent difference between a ratio and proportion is that
the numerator of a proportion is included in the population defined by the denominator.

Epidemiological Measures of Health Status

 Measurements of disease frequencyThere are two types of rates:

- Rates of morbidity (frequency of illness)
- Rates of mortality (frequency of deaths)

Death -Mortality rates

MEASURES OF DISEASE FREQUENCY

Morbidity Rate
Morbidity is the extend of illness, injuries, or disability in a defined population during specific period of time

In epidemiology three key morbidity
1 Incidence
2-Prevalence
3- Attack Rate
\square The measures of disease frequency used most frequently in epidemiology fall into
two broad categories:
prevalence and incidence.

Incidence

Incidence is the No. of new cases of disease which came into existence within a certain period of time per specific unit of population. it is the No. of new cases of a disease occurring in a specific population in a specified time period

Incidence rate $=$ number of persons developing a disease (new cases) in a specific time and locality X1000 Total number of population at risk

Incidence of disease is the number of new cases that occur in a defined population in a specific period of time The rate at which new cases of a disease arise

Incidence $=$

\square NO. of new cases of a disease occurring in the population during a specified period of time $\times 1000$ Number of persons exposed to the risk of developing the disease during that period of time

The incidence of a particular disease could therefore be expressed as, say, 5 per 1000 person per year

* The incidence of a disease quantifies the rate of new events or cases of a disease that develop in a population at risk during the specified time interval.

It permits to calculate the probability (risk) of each individuals to become ill in a set period of time.

Example

A study done on 1500 school children during 2022 found 20 with TB. By follow up the school children during 2023 the number of students with TB was 28
New cases were $8=28-20=8$
Incidence new cases only $2023=8 / 1500 \times 1000$ Incidence $=5.33 / 1000$ population $/$ year
Incidence rate $=$
№ of new cases of a disease within a population in a given time period
№ of persons exposed to risk of developing the disease in the same time period

Incidence rate:
$>$ The rate of developing the disease
$>$ It is of value for searching for the causes of the disease.
\qquad Incidence
1-An incidence rate can be used to
Estimate the probability of or risk of developing a disease during a specific time period Incidence $=5.33 / 1000$ population/year

2-As incidence goes up the risk possibility or probability goes up

Time-

Higher Incidence existence of or potential for an epidemic become known and predictable

Incidence rate=absolute risk
Probability of developing a disease
\qquad

Numerator \& Denominator in incidence

umerator

Is the No. of new cases within a time period. 8 cases

Denominator

the number of population at risk or under study in the group or population. 1500
New cases were $8=28-20=8$
Incidence new cases only $2023=8 / 1500 \times 1000$
Incidence $=5.33 / 1000$ population $/$ year

Country, Other	Total Cases \quad IV	New Cases	Total Deaths	New Deaths	Total Recovered	Active Cases	Serious, Critical	Tot Cases/ 1M pop	Deaths 1M pop	Total Tests	Tests/ 1M pop	Population \I
Morocco	327,528		5,396		275,158	46,974	1,007	8,832	146	3,814,442	102,861	37,083,615
Switzerland	304,593	+4,241	4,277	+55	211,500	88,816	524	35,092	493	2,592,950	298,735	8,679,774
Portugal	268,721	+3,919	4,056	+85	184,233	80,432	506	26,385	398	4,318,338	423,999	10,184,777
Austria	254,710	+4,377	2,577	+118	182,620	69,513	704	28,217	285	2,929,927	324,579	$9,026,852$
Sweden	225,560		6,500	+15	N/A	N/A	192	22,279	642	2,914,088	287,831	10,124,317
Nepal	224,078	+1,790	1,361	+24	204,858	17,859		7,637	46	1,681,299	57,299	29,342,758
Jordan	192,996	+4,586	2,380	+78	125,433	65,183	460	18,841	232	2,408,242	235,105	10,243,280
Ecuador	185,944		13,225		164,009	8,710	365	10,477	745	622,833	35,092	17,748,657
Hungary.	181,881	+3,929	4,008	+117	44,020	133,853	638	18,847	415	1,528,302	158,365	9,650,510
$\underline{\text { UAE }}$	161,365	+1,310	559	+5	150,261	10,545		16,238	56	15,960,104	1,606,023	9,937,659
Panama	155,658		2,973		137,004	15,681	146	35,853	685	838,981	193,246	4,341,525
Bolivia	144,034	+56	8,916	+9	119,548	15,570	71	12,273	760	353,955	30,160	11,735,888
Kuwait	140,795	+402	870	+2	133,407	6,518	75	32,778	203	1,062,076	247,254	4,295,477
Dominican Republic	139,111	+282	2,313	+2	113,134	23,664	172	12,773	212	687,292	63,106	10,891,021

THANI VOU ALLL

Population at risk be used as a denominator The incidence of a disease quantifies the rate of new events or cases of a disease that develop in a population at risk during the specified time interval.

It permits to calculate the probability (risk) of each individuals to become ill in a set period of time.
The midyear population could be used as a denominator in diseases affecting the whole community. (cholera, TB)
In other diseases, not everyone in a study population may be at risk for developing diseases. (e.g. some diseases are lifelong immunity in duration, so that once a person has it, he will not develop it again;
those persons are removed from the denominator)

