

RS MODULE Doctors 2021 - روح - Medicine - Mu

DRUG THERAPY FOR BRONCHIAL ASTHMA

DR. HEBA HASSAN

DONE BY: Bayan Mahmoud Hiba Makkawi Rana Al - Tarawneh Reem Ghabayen

الطب الحراحة

Bronchial Asthma

• Inflammatory disease characterized by reversible (irrevesrisble bronchial construction --> chronic obstructive lung disease as acute bronchial emphysema)airway obstruction due to bronchoconstriction, mucosal edema, cellular infiltration, and viscid secretions

• Manifested clinically by paroxysms of dyspnea, cough and wheezes

Drug therapy for bronchial asthma

1-Bronchodilators

- B2 agonist (Rec بتشتغل مباشرة على الما الما على الما على الما الما على الما ما الما ما الما ما ما م
- Anticholinergics

2-Anti-inflammatory drugs(mostly as prophylaxis)

- Corticosteroids (the mostly powerful)
- Omalizumab •Leukotriene antagonists

3- Supportive treatment

- Mucolytics & expectorants inhalation
- Antimicrobials

•Oxygen

• Methylxanthines.

• Mast cell stabilizers

Bronchodilators

1- β 2 agonists(useas a V.D) bind with G-coupled Rec

A. Non-selective β-agonists (βι, β2): Adrenaline (used only in bronchial asthma due to anaphylactic shock but it can cause a tachycardia and arrythmia) Selective β2 agonists:

Short-acting: salbutomal, terbutaline (4-6 H) so we give it in acute attack(need 5 to 15 minutes to work)

Long acting: salmeterol and formeterol (12 H)\as a prophylaxix between the attacks

• Selective β 2 agonists replaced non-selective β agonists as they lack their side effects e.g. palpitation, tachycardia and arrhythmias

1) Salbutamol: Short acting beta2 agonist (SABA) Farcolin acts as salbutamol

we use it instead of adrenaline to avoid the side effects of adrenaline

 \bullet Selective stimulant of β 2 adrenergic receptors \bullet Selective action on the bronchi

Given orally & by inhalation (saline we add 5 drops in a nebuliz

2) Terbutaline: Short acting beta2 agonist (SABA)

Like salbutamol but has a delayed onset of action

3) Salmeterol & Formoterol: long acting beta2 agonist (LABA)

- Selective long-acting β2 agonists
- Given by inhalation for long-term prevention of bronchial asthma
- Should be combined with inhaled corticosteroids to avoid tolerance

Adverse effects:

- Tremors
- Tachycardia: Arrhythmia may occur in patients with underlying cardiac

diseases eg, ischemic heart disease

- Tolerance (that's why i give cortisone , making the receptor more sensitive)
 - Hypokalemia (should take K+ in food)

Note: Adverse effects occur more frequently with oral preparations than with inhalation

Note: Nebulizers (by deep inspiration) provide more quantity of the drug than MDIs, so nebulized β 2 agonists can cause more adverse effects

2- Methylxanthines

(Aminophylline

R,

Theophylline)

Mechanism of action:

■ PDE inhibitors→ cAMP which causes redistribution of intracellular

Ca+2→ bronchodilatation

- Block adenosine receptors (like caffeine) → bronchodilatation
- Improve diaphragmatic contraction & ventilatory response to
 hypoxia
- mediators release from mast cell.

Pharmacokinetics:

- Theophylline is absorbed by all routes
- Distributed all over the body & passes BBB and placental barrier
- Metabolized in liver (by xanthine oxidase) into soluble methyluric
 acid (not precipitated in the joints → not contraindicated in gout)
 - Narrow therapeutic window with low safety

Pharmacological actions:

Relaxation of the smooth muscle (bronchial, intestinal, biliary, ureteric and vascular smooth muscles "except cerebral blood vessels"
 → vasodilatation and hypotension)

 CVS: Direct: positive inotropic & chronotropic effects - VD (hypotension)

Central: stimulation of CIC (bradycardia) & VMC (hypertension)

- Large & rapid IV injection → hypotension & arrhythmia.
 Precautions:
- Monitoring of plasma level (to avoid toxicity)
- Slow IV administration to avoid hypotension & arrhythmia.

Note: Roflumilast:

■ Selective PDE-4 inhibitor → selective action on airways &

inflammatory cells → fewer adverse effects than

methylxanthines

- Approved for treatment of COPD (chronic obstructive disease)
- 3- Muscurinic (M) Antagonists Not use alone, we should use it with B2 agonist *Active as passive bronchodilators
- Atropine (tertiary amine) blocks bronchial M receptors, but it is not effective in bronchial asthma because:

1. Cholinergic pathways play a minor role in pathogenesis of bronchial asthma

- 2. Non-selective effects:
- Dryness of bronchial secretions + Muco-ciliary function
- Ipratropium bromide:
- \checkmark Quaternary ammonium derivative of atropine

 \checkmark Minimal amounts are absorbedightarrowno systemic adverse effects

✓ More selective (causes bronchodilation without effects on sputum viscosity or ciliary function)

 \checkmark No central effects

 \checkmark Given by inhalation & can be combined with eta2 agonists

- √ Short-acting→used 3-4 times daily
 - Tiotropium: differs from ipratropium in the following:
- ✓ Long-acting (given once/day)
- $\sqrt{\text{Given by inhalation}}$

 \checkmark Approved for treatment of COPD with no cardiac adverse

effects.

Anti-Inflammatory Drugs

1- Corticosteroids

✓ Synthesis of lipocortin→↓ PLA2 activity→ arachidonic acid, PGs and LTs synthesis

√ Immunosuppressive action (↓ antibody synthesis) & inhibition of

Ag/Ab reaction & mast cell stabilization

- \checkmark Capillary permeability & reduce mucosal edema
- √**↑**Catecholamines effect through:
- Block neuronal reuptake
- Methylation of noradrenaline to adrenaline

Uses in bronchial asthma: Prophylaxis (in between attacks) \checkmark **Repeated nocturnal** \checkmark (at night)asthma ✓ Acute severe asthma **Preparations:** A. Inhalation: beclomethasone, budesonide, fluticasone (long-acting) prednisolone hydrocortisone, **Parentral:** methvl Β. (IV), dexamethsone, ACTH C. Oral: prednisolone Adverse effects: **corticosteroids contraindicated in children because it inhibits growth A. Inhalation: ✓ Oral moniliasis (treated by nystatin) by candida \checkmark Dysphonia due to weakness (myopathy) of adductor muscle of the cord **B. Suppressive effects: adrenocortical suppression** C. Cushing's syndrome (with the use of large doses of corticosteroids) D. Metabolic: hypokalemia, hyperglycemia, salt & water retention, weight gain and hypertension E. Cataract Arachidonic acid **Good choise for children 2- Leukotriene Antagonists** 5-LO inhibitors 5-lipoxygenase instead of corticosteroid (5-LO) Zileuton They include: 1. LT receptor antagonists (Montelukast & zafirlukast) Leukotrienes CysLT1 receptor 2. 5-LOX inhibitors (zileuton): LTs synthesis

- **Pharmacokinetics:**
- \checkmark All members are given orally
- $\sqrt{2}$ Zafirlukast absorption is affected by food so taken before meals

antagonists Montelukast

> Pranlukast Zafirlukast

Leukotrienes receptor

 $\sqrt{}$ They are metabolized by liver

Uses:

✓ prophylaxis of bronchial asthma especially aspirin-induced asthma because COX is inhibited therefore the entire patwhway is toward LTs.

Adverse effects:

 \checkmark Liver toxicity:

* Regular monitoring of liver transaminases is required if their levels exceeded 3-5 times the normal level, these drugs should be discontinued

More reported with zileuton

✓ Systemic vasculitis (Churg-Strauss syndrome): rare

3- Mast cell stabilizers

Members:

- 1. Disodium cromoglycate (Cromolyn sodium)
- 2. Ke<mark>toti</mark>fen
- ✓ They are not bronchodilators
- \checkmark So, they cannot relieve acute attacks of asthma
- $\sqrt{}$ They can be effective only if given before the exposure the antigen
- ✓ Mechanism: stabilization of mast cell membrane (possibly by blocking calcium influx)→.
 release of allergic mediators eg, histamine & LTs.
- \checkmark They are useful chiefly for asthma prophylaxis, particularly children & young adults

 \checkmark Ketotifen has additional antihistamine effect

√ Route:

Disodiumcromoglycate:inhalation

* It is also available as nasal spray for allergic rhinitis & as eye drops for allergic conjunctivitis

Ketotifen: oral administration

√ Adverse effects:

- Disodium cromoglycate:
- Local irritation: bronchospasm & cough
- Ketotifen:
- * Drowsiness

4-Omalizumab (very expensive drug)

✓ Selectively binds to human IGE → inhibits IGE binding to its receptor on mast cells & basophils surface→. ↓ release of inflammatory mediators. Therefore, it is appropriate only for extrinsic asthma.

 \checkmark It decreases severity and frequency of asthma exacerbations

 \checkmark Used in patients resistant to conventional therapy (β 2 agonists & inhaled corticosteroids)

 \checkmark Its use is limited by its high cost

Nature Reviews | Drug Discovery

or

Bronchial Asthma Prophylaxis

- \checkmark Control of predisposing factors
- \checkmark Desensitization of the triggering substance for asthma
- ✓ Drugs that prevent or diminish the frequency of the attacks:
- 1. Bronchodilators (long duration)
- 2. Corticosteroids (oral or inhalation)
- 3. LT antagonists
- 4. Mast cell stabilizers

Not bronchodilator so we can't use it with acute attacks asthma

- -it given before exposure to the antigen
- 5. Omalizumab

Most pediatrics who suffer from asthma will be relieved completely at the age of 5-6 years

Acute attack

Inhaled short-acting β 2 agonist e.g. salbutamol or terbutaline

Long-term prophylaxis (Between attacks):

Severity	Long-term control	Quick relief of acute symptoms
Intermittent Less than 2/ week	No daily medication.	Short-acting β2 agonist
Mild persistent more than 2/ week	Low-dose inhaled corticosteroids (ICS).	Short-acting β2 agonist
Moderate persistent daily	Low- to medium-dose ICS + long-acting β2 agonist (LABA).	Short-acting β2 agonist
Severe persistent continual	High-dose ICS + LABA	Short-acting β2 agonist 29

Acute severe asthma (Status asthmaticus)

√ Treatment:

1. Hospitalization & O2 therapy

2. Inhaled short-acting β 2 agonist (frequent or continuous

administration) is the 1st line of choice. Ipratropium bromide should be added.

- 3. Systemic corticosteroids:
- Oral prednisolone (or)
- IV hydrocortisone or methylprednisolone (if the patient has vomiting or unable to swallow)

4. IV fluids (some patients are dehydrated). K+ supplements are considered (repeated administration of β2 agonists→hypokalemia)
5. If failed to improve, aminophylline slow IV infusion can be administered

- 6. Mechanical ventilation is considered if the patient still deteriorating
- 7. On discharge, oral prednisolone should be continued for short courses

اللهم عليك باليهود ومن يعاونهم،

ياحي ياقيوم زلزل الأرض من تحت أقلاامهم ، اللهم ارسل عليهم طيرًا ابابيل ترميهم بحجارة من سجيل ، اللهم وأجعلهم الثقلين عبرة وآية ، اللهم عليك بهم فإنهم لا . يعجزونك حسبنا الله ونعم الوكيل

