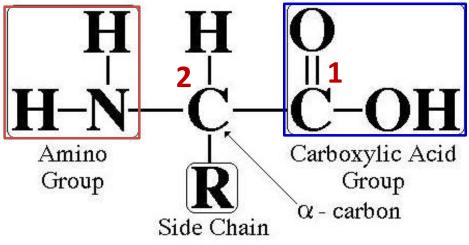


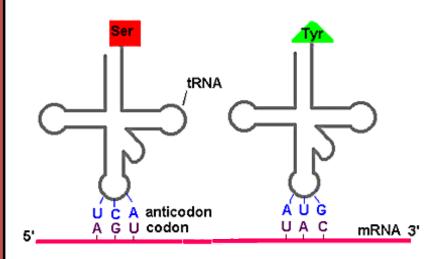
Amino Acids 1


Dr. Nesrin Mwafi

Biochemistry & Molecular Biology Department Faculty of Medicine, Mutah University

Amino Acid Structure

- Amino acids are biologically important organic molecules that contain both carboxylic acid (-COOH) as well as amine (-NH₂) groups
- The side-chain also called "R" group is specific to each amino acid


- Amino group is attached to α -carbon (C2)
- C, N, O and H are the key elements of amino acids

Biological significance of Amino Acids

- 1. Amino acids are N-containing molecules
- 2. The basic structural building units (monomers) of proteins (protein role)
- 3. Precursors of many biomolecules like neurotransmitters (non-protein role)
- 4. They are also utilized as an energy source
- There are 20 standard (canonical) amino acids which are encoded directly by triplet codons in the universal genetic code during in vivo protein synthesis process (mRNA translation)

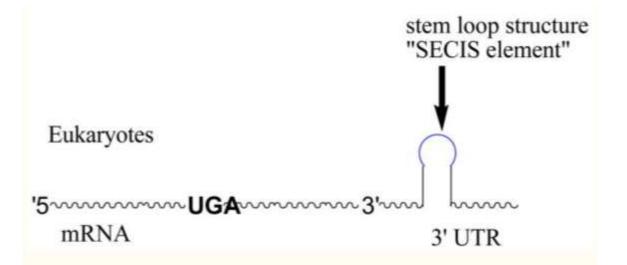
Genetic Code Table

 The 20 standard amino acids are known as proteinogenic or natural amino acids 1st base in codon

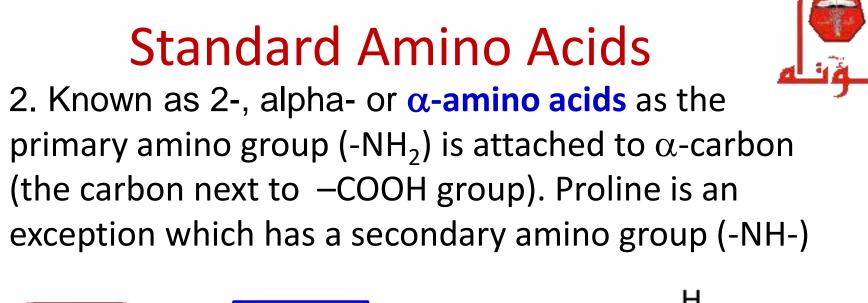
	U	С	Α	G	
U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys <mark>STOP</mark> Trp	U C A G
С	Leu Leu Leu Leu	Pro Pro Pro Pro	His His GIn GIn	Arg Arg Arg Arg Arg	U C A G
Α	lle lle lle Met	Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	UCAG
G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	U C A G

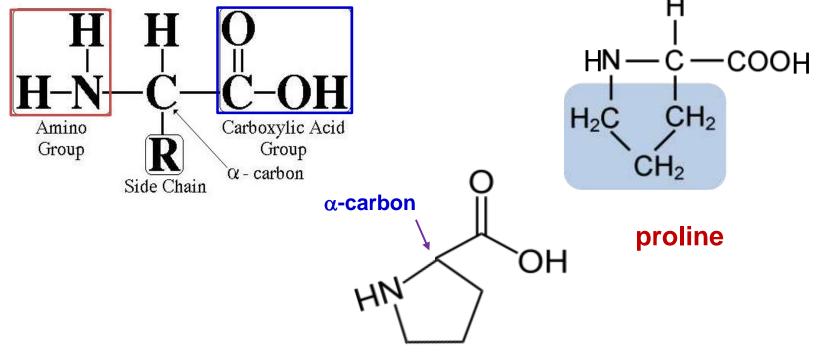
2nd base in codon

3rd base in codor



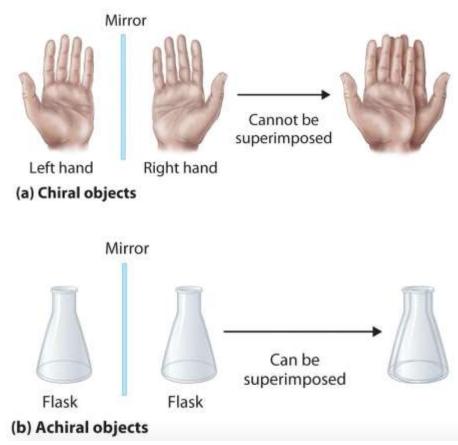
Histidine	Arginine	Alanine Asparatate		
Isoleucine	Asparagine			
Leucine	Glutamine	Cysteine		
Methionine	Glycine	Glutamate		
Phenylalanine	Proline			
Threonine	Serine			
Tryptophan	Tyrosine			
Valine				
Lysine				


Standard Amino Acids

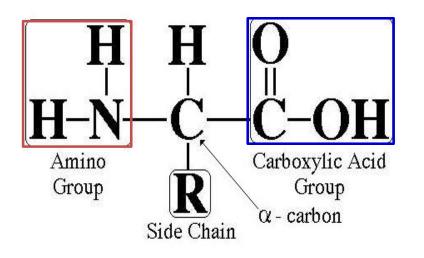


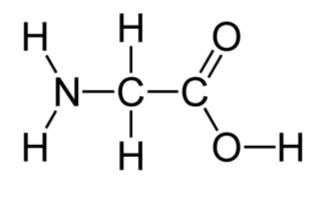
 They are proteinogenic and natural amino acids (the other proteinogenic amino acids N-formyl methionine, pyrrolysine and selenocysteine are called non-standard or non-canonical amino acids)

Incorporation of selenocysteine in protein structure by unique mechanism



Standard Amino Acids

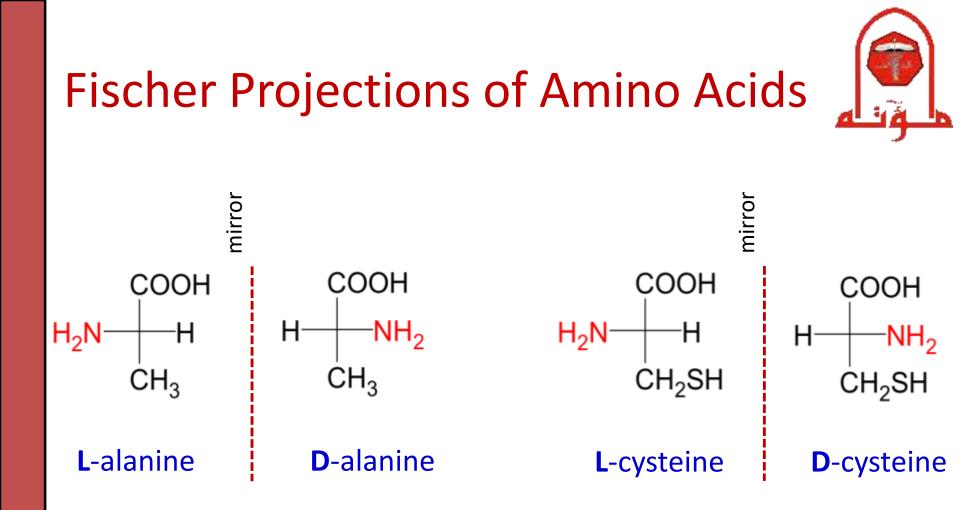

 They are all chiral molecules (except glycine which has achiral C) with L- stereochemical configuration (left-handed isomers)



Standard Amino Acids

- Chiral molecules should contain at least one chiral center (usually a carbon atom)
- Chiral carbon: asymmetric carbon atom attached to 4 different groups of atoms

Isomerization



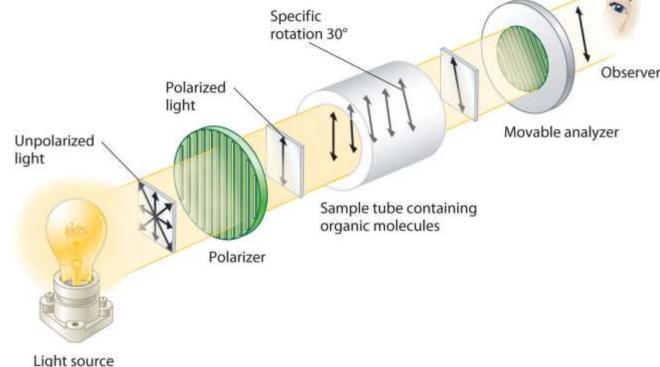
- Isomers: are molecules with same molecular formula but different chemical structures
 - 1. Constitutional (structural) isomers: atoms and functional groups bind together in different ways
 - 2. Stereoisomers (spatial isomers): differ in the configuration of atoms rather than the order of atomic connectivity

D/L Amino Acids

- Enantiomers: are two stereoisomers that are mirror images to each other but not superimposable
- D- (dexter)/L- (laevus) Nomenclature system: commonly used to assign the configurations in sugars (carbohydrates) and amino acids
- As a rule of thumb: if the amino group is on the right-hand side of α-carbon at Fisher projection, the configuration is D. If it is on the left-hand side, the configuration is assigned as L.

Fisher Projection: is one way commonly used to represent the structure of chiral molecules like carbohydrates and amino acids

D/L Amino Acids



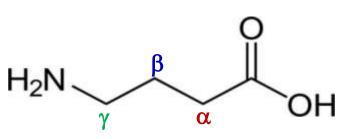
- Most naturally occurring sugars are D-isomers while most naturally occurring amino acids are Lisomers (amino acids of protein)
- D-amino acids polypeptides (right-handed isomers) are components of bacterial cell walls to resist digestion by other organisms

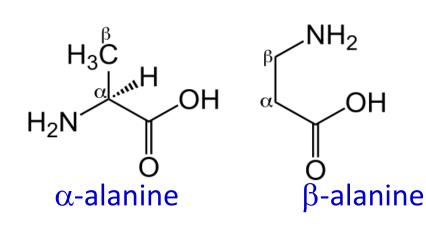
Optical Activity

 Enantiomers are optically active and can rotate the polarized light plane either clockwise or counterclockwise

Polarimeter is used to measure optical rotation

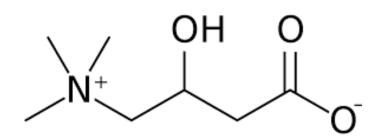
Optical Activity




- (+)/(-) nomenclature system: if one enantiomer rotates the light clockwise, it is labeled (+) or (*d*) (dextrorotatory). The second mirror image enantiomer is labeled (-) or (*l*) laevorotatory
- D/L system should not be confused with +/- or d/l system.
 For example, D-isomer might be levorotatory
- 9 of 19 L-amino acids commonly found in proteins are dextrorotatory
- Racemic mixture contains equal amounts of each enantiomer (net rotation is zero)

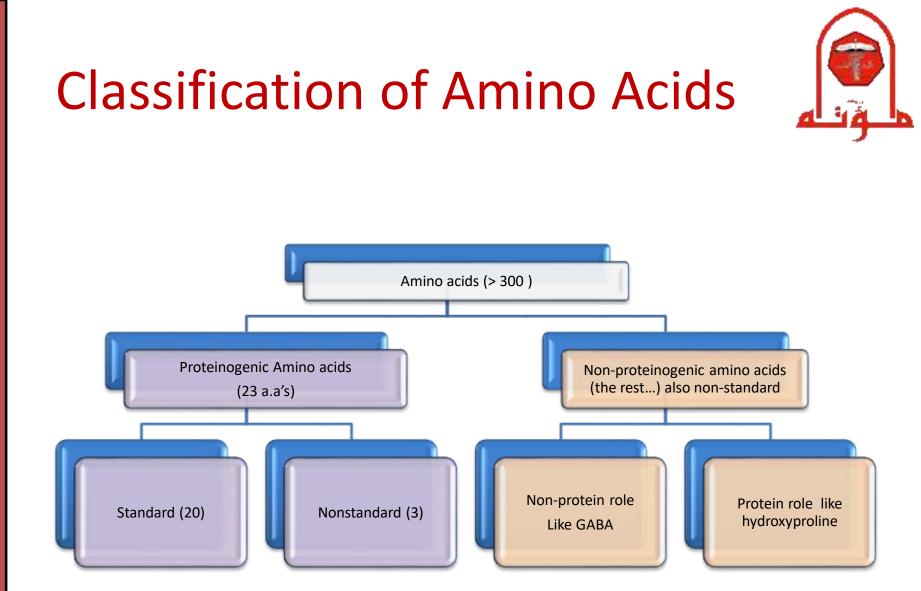
Classification of Amino Acids

- >300 amino acids classified in many ways:
- 1) Standard and non-standard amino acids
- 2) α , β , γ and δ amino acids



γ-aminobutyric acid (GABA) is the inhibitory neurotransmitter in the brain

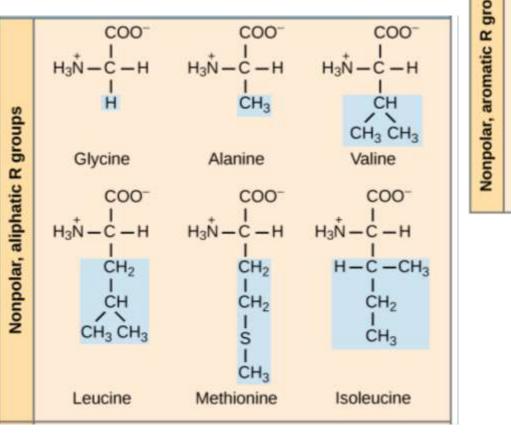
Classification of Amino Acids

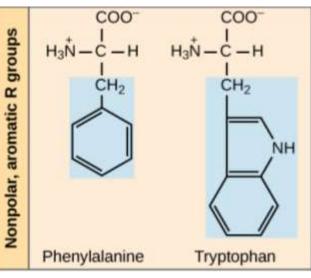


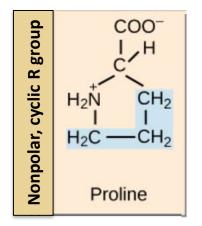
3) Proteinogenic and non-proteinogenic amino acids (non-proteinogenic amino acids either have non-protein role like GABA and carnitine or have a protein role but formed by post-translational modification of protein like hydroxyproline)

Carnitine has a role in lipid transportation and fat metabolism

Categories of Standard Amino Acids



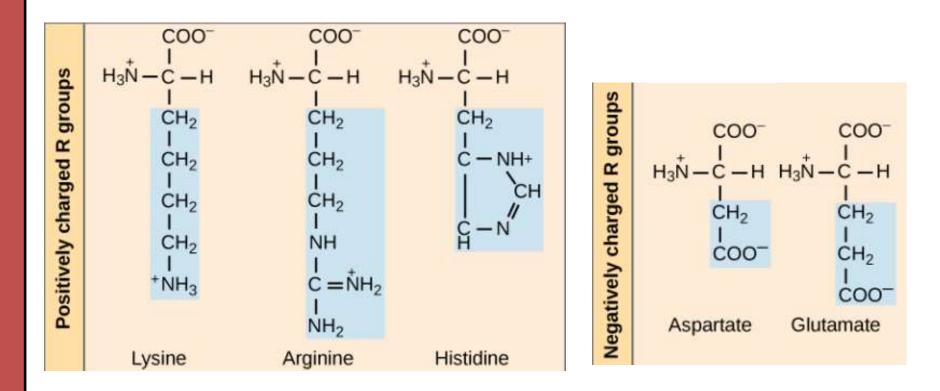

- The 20 standard amino acids are classified into 3 major categories according to the polarities of their "R" groups:
 - 1) Amino acids with non-polar R groups
 - 2) Amino acids with charged polar R groups
 - 3) Amino acids with uncharged polar R groups



Amino acids with non-polar R groups

6 amino acids with aliphatic, 2 with aromatic and one with cyclic side chains

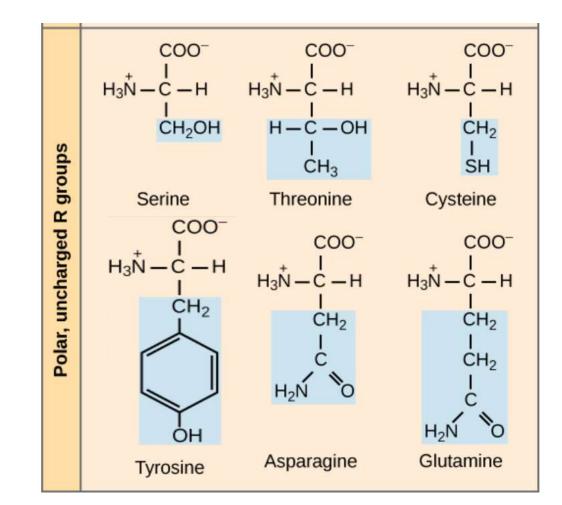
Amino acids with non-polar R groups



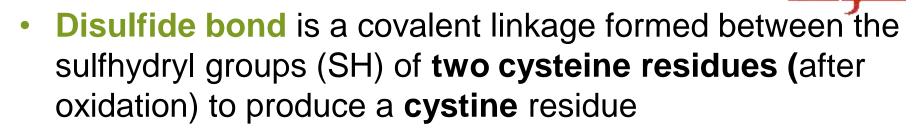
- Glycine has the simplest side chain: H atom
- Alanine, valine, leucine and isoleucine have aliphatic hydrocarbon side chains
- Methionine has a thioether side chain (sulfur atom)
- Proline has a cyclic pyrrolidine side chain
- Phenylalanine has a phenyl moiety
- Tryptophan has an indole group

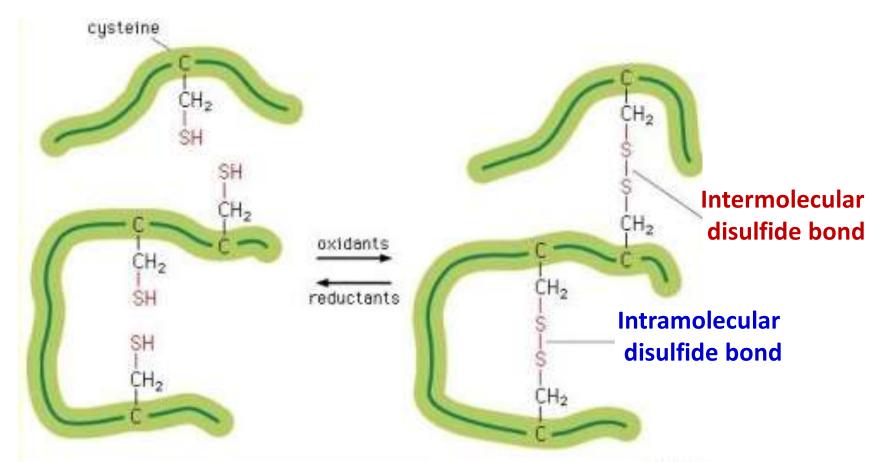
Amino acids with charged polar R groups

 3 amino acids are positively charged (basic) and 2 amino acids are negatively charged (acidic)


Amino acids with charged polar R groups

- Arginine has a guanidine group
- Lysine has a butyl ammonium side chain
- Histidine has imidazole group
- Aspartic and glutamic acids in their ionized state are called aspartate and glutamate, respectively


• 6 amino acids with hydroxyl, amide or thiol groups



Amino acids with uncharged polar R groups

- Serine and threonine bear hydroxyl (-OH) R group and Tyrosine is aromatic and has a phenolic group
- Asparagine and glutamine have amide bearing side chains. They are the amide derivatives of aspartic and glutamic acids (OH is replaced with NH₂)
- Cysteine is unique because it has free sulfhydryl (-SH) group that can form a disulfide bond (-S-S-) with another cysteine through the oxidation of 2 thiol groups (cystine is the oxidized dimeric form). The disulfide bridge in proteins contributes to the stability and overall shape of a protein

Amino acids with uncharged polar R groups

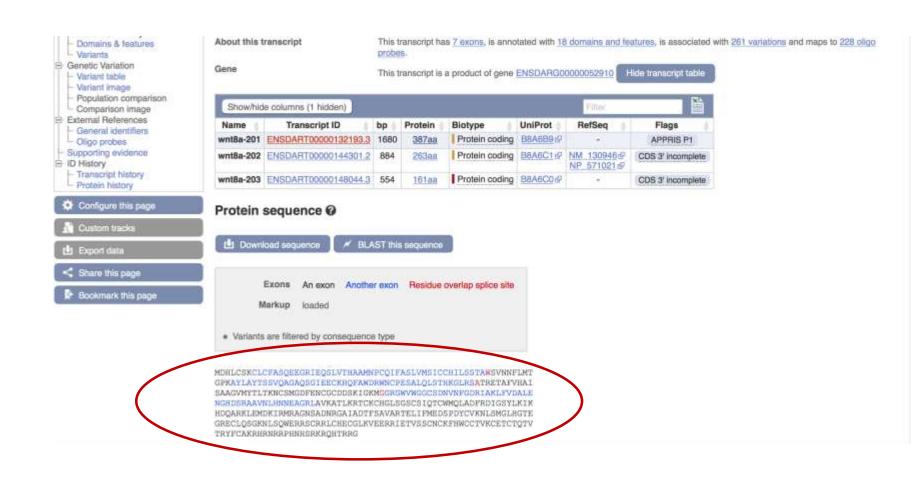
Amino acids with uncharged polar R groups

- Cysteine residues may be separated from each other by many amino acids in the primary sequence of a polypeptide or may even be located on two different polypeptides. The folding of the polypeptide chain(s) brings the cysteine residues into proximity and permits covalent bonding of their side chains.
- Disulfide bond could be intramolecular (2 cysteine residues on the same polypeptide chain) or intermolecular (2 cysteine residues on two separate/ different polypeptide chains)

Amino Acids Abbreviations

	•	
a	ۆت	

<u>3-letters</u>	<u>1-letter</u>	Amino acid
Ala	A	Alanine
Arg	R	Arginine
Asn	N	Asparagine
Asp	D	Aspartic acid (Aspartate)
Cys	С	Cysteine
Gln	Q	Glutamine
Glu	Е	Glutamic acid (Glutamate)
Gly	G	Glycine
His	H	Histidine
Ile	I	Isoleucine
Leu	L	Leucine
Lys	K	Lysine
Met	М	Methionine
Phe	F	Phenylalanine
Pro	P	Proline
Ser	S	Serine
Thr	Т	Threonine
Trp	W	Tryptophan
Tyr	Y	Tyrosine
Val	V	Valine


Ensembl Genomic Browser

CEnsembl *** BLA	ST/BLAT VEP	Tools BioMart Dowr	loads	Help & C	locs Blog				Search Zebrafish	Login/Register	
Zebrafish (GRCz11	1) 🔻										
Location: 14:34,490,445-34,494,8	99 Gene: wnt8a	Transcript: wnt8a-201									
Transcript-based displays - Summary - Sequence	Transcri	pt: wnt8a-201 ENSI	DARTO	000013219	3.3						
- Exons	Description		wing	ess-type Mi	VTV integration sit	e family, me	mber 8a [Source:	ZFIN:Acc:ZOB-GEN	/E-980526-332 €]		
	CDNA Protein Protein Information Location			et/D309727.14, wnt8, wnt8 ORF1, wnt8 ORF2, wnt8.1, wu:fa20e02, wu:fe05d07							
Protein Information				Chromosome 14: 34,490,445-34,494,899 forward strand.							
Protein summary Domains & features Variants			This transcript has <u>7 exons</u> , is annotated with <u>18 domains and features</u> , is associated with <u>261 variations</u> and maps to <u>228 oligo</u> probes.								
Genetic Variation Variant table Variant image	Gene		This transcript is a product of gene ENSDARG00000052910 Hide transcript table								
- Population comparison Comparison image	Show/hid	e columns (1 hidden)					Filler.				
External References	Name 💧	Transcript ID	bp 💧	Protein	Biotype	UniProt	RefSeq	Flags			
- Oligo probes	wnt8a-201	ENSDART00000132193.3	1680	38788	Protein coding	B8A6B9@	-	APPRIS P1			
B ID History	wnt8a-202	ENSDAFT00000144301.2	884	263aa	Protein coding	B8A6C1@	NM_130946@ NP_571021@	CDS 3' incomplete	3		
Protein history	wnt8a-203	ENSDAFT00000148044.3	554	<u>161aa</u>	Protein coding	B8A6C0@	-	CDS 3' incomplete			

Ensembl Genomic Browser

