

Amino Acids 2

Dr. Nesrin Mwafi

Biochemistry & Molecular Biology Department Faculty of Medicine, Mutah University

Nutritional Classification

- Standard amino acids are divided into three types according to the classification based on nutrition and body requirement:
- 1. Essential amino acids
- 2. Non-essential amino acids
- 3. Conditionally essential amino acids

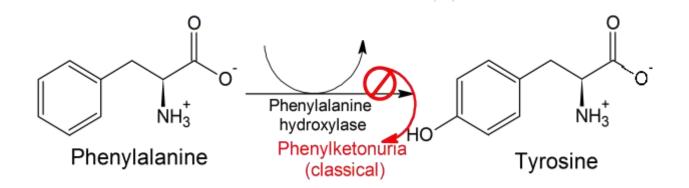
Essential Amino Acids

- Cannot be produced by the body
- Must be supplied through diet
- 8 amino acids: valine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine and tryptophan

Non-essential Amino Acids

- Can be synthesized by the body
- 9 amino acids: Glycine, alanine, serine, cysteine, aspartic acid, glutamic acid, asparagine, glutamine and proline

Conditionally Essential Amino Acids



- Synthesized in the body in insufficient amounts so should be supplied in diet (requirements are higher than production rate)
- Essential only in certain cases: children, pregnant and lactating women. Also in certain genetic diseases.
- 3 amino acids : Histidine, arginine and tyrosine. For example, arginine and histidine are growth promoting factors and during growth are not synthesized in sufficient amounts so essential in growing children, pregnancy and lactation.

Conditionally Essential Amino Acids

 On the other hand, tyrosine is produced from phenylalanine (essential amino acid), so if the diet is deficient in phenylalanine or if an individual is deficient in an enzyme required to convert phenylalanine to tyrosine (the inherited disease / inborn error of metabolism called phenylketonuria PKU), tyrosine will be required as well.

Phenylketonuria

- The accumulated phenylalanine is toxic to brain and can lead to intellectual disability and mental disorders.
- PKU is an autosomal recessive disease

Newborn screening program

Amino Acid Derivatives

- The non-standard/ non-proteinogenic amino acids are either not found in proteins (e.g. carnitine and GABA) or have protein role but added to polypeptide chain during post translational modification process (e.g. hydroxyproline)
- Non-standard amino acids that are found in proteins are formed by post-translational modification. These modifications are often essential for the function or regulation of a protein:
- The carboxylation of glutamate occurring in proteins involved in blood-clotting cascade allows for better binding of calcium cations

Amino Acid Derivatives

2. The hydroxylation of proline in collagen protein is critical for maintaining connective tissues

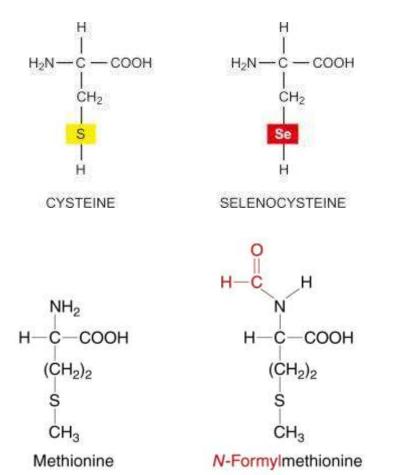
Collagen

Non-protein Functions

- Some non-standard amino acids are not found in proteins. Examples include the neurotransmitter gamma-aminobutyric acid (GABA)
- Many amino acids are used to synthesize other molecules called amino acid derivatives, for examples:
- 1) Tryptophan is a precursor of the neurotransmitter serotonin
- **2)** Tyrosine is a precursor of the thyroxin (thyroid hormone) and the catecholamine neurotransmitters like dopamine, adrenaline and noradrenaline
- **3)** The local mediator histamine which is released during allergy is derived from the decarboxylation of histidine

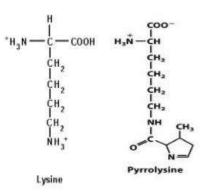
Non-protein Functions

4) γ-aminobutyric acid (GABA) is the major inhibitory NT in brain. It is nonstandard amino acid derived from glutamate.


Non-proteinogenic Non-standard

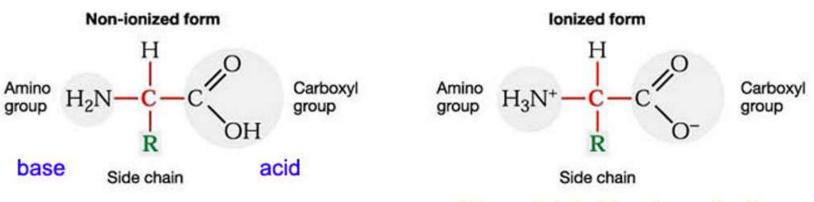
- Generally, nonproteinogenic nonstandard amino acids are derivatives of standard amino acids:
 - 1. Post translational modification process
 - 2. Other enzymatic reactions
- Nonproteinogenic nonstandard amino acids may have protein role or nonprotein role (they are active by themselves and have a function

Proteinogenic Non-standard



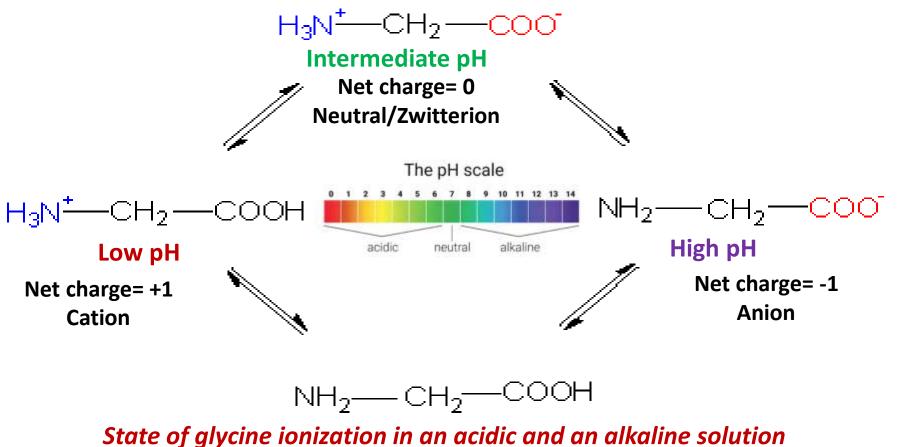
 Proteinogenic nonstandard amino acids are also derivatives of standard amino acids

Lysine V/s Pyrrolysine


 Pyl is similar to Lys, but with an added
pyrroline ring linked the end of Lys side chain (stretching from NH2 toNH).

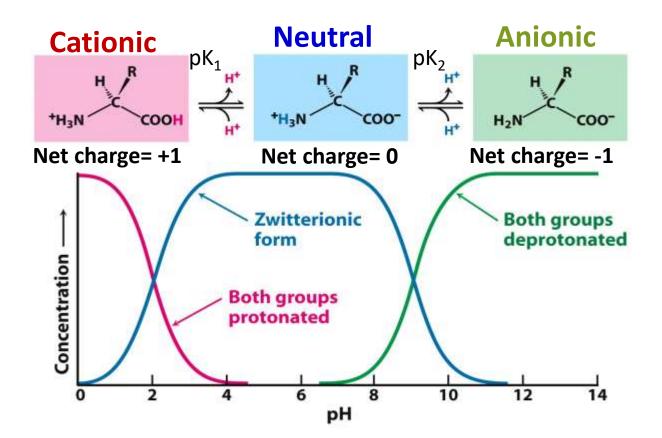
Amphoteric property of Amino Acids

- Amino acids are amphoteric molecules (ampholytes) having both acidic (-COOH) and basic (-NH₂) groups
- α-amino acids are ionized in aqueous solutions with the ionization state is dependent on the pH value



which group is ionized depends upon the pH

Ionization of Amino Acids



 At very low pH values, these groups are fully protonated and at very high pH values, these groups are deprotonated. At intermediate pH, both are ionized

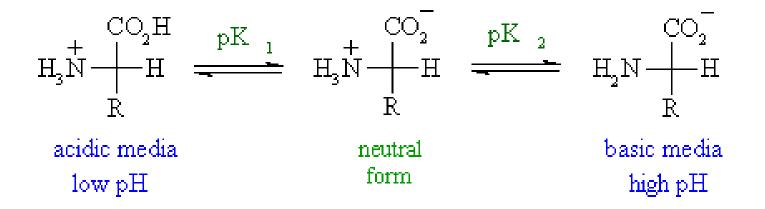
Amino Acids as Zwitterions

- ال ال
- Zwitterions (dipolar molecules) have charged —NH₃⁺ and COO⁻ groups (both groups are ionized). Zwitterion is neutral as it carries + and - charges

Isoelectric Point (pl)

- Isoelectric point is the pH at which a particular molecule carries no net electrical charge (overall charge = zero)
- At pl, zwitterion is the dominant form of the amino acids

 $pI = average of pK's = \frac{1}{2} (pK_1 + pK_2)$


- **Note:** pK = -log [K] where K is the dissociation constant of a weak acid or base
- pK is the pH value at which half of the acid is dissociated

Isoelectric Point (pl)

 For example, the simplest amino acid glycine has pK₁ = 2.34 and pK₂ = 9.6

$$pI = \frac{1}{2} (pK_1 + pK_2)$$

= $\frac{1}{2} (2.34 + 9.6)$
= 5.97

pKa values of Amino Acids

The pK values for the α -carboxyl, α -amino groups and side chains

Amino acid	pK ₁	pK ₂	рК _R
Alanine	2.4	9.9	
Arginine	1.8	9.0	12.5
Asparagine	2.1	8.7	-
Aspartate	2.0	9.9	3.9
Cysteine	1.9	10.7	8.4
Glutamate	2.1	9.5	4.1
Glutamine	2.2	9.1	-
Glycine	2.4	9.8	-
Histidine	1.8	9.3	6.0
Isoleucine	2.3	9.8	-

Amino acid	pK ₁	pK ₂	рК _R
Leucine	2.3	9.7	
Lysine	2.2	9.1	10.5
Methionine	2.1	9.3	-
Phenylalanine	2.2	9.3	÷.)
Proline	2.0	10.6	14
Serine	2.2	9.2	7.
Threonine	2.1	9.1	-
Tyrosine	2.2	9.2	10.5
Tryptophan	2.5	9.4	1217
Valine	2.3	9.7	-