

General Microbiology Course (Antibiotics A & B)

Dr. Mohammad Odaibat Department of Microbiology and Pathology Faculty of Medicine, Mutah University

Objectives

- Some history highlights
- Structure of Gram positive and negative bacteria cell wall
- Targets of the antibacterial drugs
- Mechanisms of action of antibacterial drugs
- The mechanisms of antibacterial resistance

Discovery of Antimicrobial Agents

Antibacterial agents which inhibit bacterial cell wall synthesis was discovered by Fleming from a fungal colony (1928)

The product of the mold was named penicillin, after the Penicillium mold from which it was derived Isolated and purified by Florey and Chain (1938)

First successful clinical trial (1941) Development of semi-synthetic penicillins (1958-1960)

Sir Alexander Fleming

Discovery of Antimicrobial Agents

Fleming's Petri Dish

antibiosis = against life

Definitions

Antibiotics are classified based on

- **1. Target-specificity or antimicrobial spectrum**: the range that a drug kills or suppresses the growth of microorganisms.
 - ✓ Narrow-spectrum: the drugs that only act on Gram positive or Gram negative bacteria.
 - ✓ Broad-spectrum: the drugs that have act on Gram positive & Gram negative bacteria.

- 2. Killing bacteria or prevent cell division
- ✓ **Bactericidal:** antibiotic that kills bacteria
- ✓ **Bacteriostatic**: antibiotic that prevents bacterial cell division

Cephalosporin Antibiotics Made Easy - Simple Trick!!

CECH Cefaclor and Cefuroxime are 2nd generation

5th gen "ceft-l" Ceftobiprole

Ceftolozane Ceftraroline

Inhibition of cell wall synthesis

Structure of penicillin

Mechanism of action - bacterial cell wall synthesis

Gram negative bacterial cell wall structure

Amoxicillin

Methicillin

Antimicrobials that Bind to the 30S Ribosomal Subunit

Aminoglycosides

Streptomycin Kanamycin Gentamicin Tobramycin Amikacin Netilmicin <u>Spectinomycin</u> neomycin (topical)

Tetracyclines

Minocycline doxycycline

Inhibition of protein synthesis

Antimicrobials that Bind to the 30S Ribosomal Subunit

Aminoglycosides

- They irreversibly bind to the 30S and eventually they will freeze the initiation complex (30S-mRNAtRNA) so that no further initiation can occur.

-Selectivity due to differences in prokaryotic and eukaryotic ribosomes

-Resistance – Common

Inhibition of protein synthesis Antimicrobials that Bind to the 30S Ribosomal Subunit Tetracyclines

Mode of action - The tetracyclines reversibly bind to the 30S ribosome and inhibit binding of aminoacyl-t-RNA to the acceptor site on the 70S ribosome.

Spectrum of activity - Broad spectrum; Useful against intracellular bacteria **Resistance** – Common

70S Initiation Complex

Antimicrobials that Bind to the 50S Ribosomal Subunit

Inhibition of protein synthesis

Antimicrobials that Bind to the 50S Ribosomal Subunit

Amphenicols and Lincosamides

Mode of action - These antimicrobials bind to the 50S ribosome and inhibit peptidyl transferase activity of the 23S rRNA.

Inhibition of protein synthesis

Antimicrobials that Bind to the 50S Ribosomal Subunit

Macrolides : erythromycin, clarithromycin, azithromycin

- Mode of action The macrolides inhibit translocation.
- **Spectrum of activity**: Gram-positive bacteria, *Mycoplasma, Legionella*
- Resistance: common

Inhibitors of RNA Synthesis

Rifamycins group:

Rifampin, Rifampicin, Rifabutin

Selectivity due to differences between prokaryotic and eukaryotic RNA polymerase

Mode of action: these antimicrobials bind to DNA-dependent RNA polymerase and inhibit initiation of mRNA synthesis.

Resistance: Common

Inhibitors of DNA Synthesis

Fluoroquinolones:

nalidixic acid, ciprofloxacin, ofloxacin, norfloxacin, levofloxacin.

Mode of action - These antimicrobials bind to the A subunit of DNA gyrase (topoisomerase) and prevent supercoiling of DNA, thereby inhibiting DNA synthesis.

Resistance - Common for nalidixic acid

Inhibition of nucleic acid synthesis

Nucleic acid synthesis is inhibited by:

- 1. Trimethoprim
- 2. Sulfonamide group: Sulfamethoxazole, Sulfadiazine Sulfathiazole, Sulfamerazine

Interference with cell membrane integrity

- Polymyxin B: binds to membrane of Gram negative bacteria and alters permeability
- This leads to leakage of cellular contents and cell death
- These drugs also bind to eukaryotic cells to some extent, which limits their use to topical applications

Antimicrobial Drug Resistance Principles and Definitions

• Resistance can arise by mutation or by gene transfer (*e.g.* acquisition of a plasmid)

• Resistance provides a selective advantage

Resistance can result from single or multiple steps

Principles of Antimicrobial Drug Resistance

- Altered permeability
 - Altered influx
 - Gram negative bacteria

- Altered permeability
 - Altered efflux
 - tetracycline

- Inactivation
 - Beta-lactamase

Antimicrobial Drug Resistance Principles and Definitions

- Altered target site
 - Penicillin binding proteins
 - RNA polymerase

Altered

– 30S ribosome

Normal

Antibiotic Classes

- Mnemonic to remember main antibiotic classes
- Tricks to remember the names of antibiotics in each class
- Trick to remember **gram coverage** of each antibiotic class.
- Trick to remember mechanism of action of each antibiotic class.

Antibiotics classes Mnemonic

Antibiotic Can Terminate Protein Synthesis For Microbial Cells Like Germs

- 1. Aminoglycosides
- 2. Cephalosporins
- 3. Tetracyclines
- 4. Penicillins
- 5. Sulfonamides
- 6. Fluoroquinolones
- 7. Macrolides
- 8. Carbapenems
- 9. Lincosamides
- 10. Glycopeptides

Antibiotic Classes

Mnemonic	Groups	Medication Names	Gram Coverage	Mechanism of Action
Antibiotics	Aminoglycosides	Streptomycin Gentamicin	Gram (-)	Inhibit Protein Synthesis (30s)
Can	Cephalosporins	Ceftriaxone Cefepime	Gram (+)/(-)	Inhibit Cell Wall Synthesis
Terminate	Tetracyclines	Tetracycline Doxycycline	Gram (+)/(-)	Inhibit Protein Synthesis (30s)
Protein	Penicillins	Ampicillin Amoxicillin	Gram (+)/(-)	Inhibit Cell Wall Synthesis
Synthesis	Sulfonamides	Sulfasalazine Sulfamethoxazole	Gram (+)/(-)	Inhibit Folate Synthesis
For	Fluoroquinolones	Ciprofloxacin Levofloxacin	Gram (+)/(-)	Inhibit DNA Replication
Microbial	Macrolides	Azithromycin Erythromycin	Gram (+)	Inhibit Protein Synthesis (50s)
Cells	Carbapenems	Meropenem Ertapenem	Gram (+)/(-)	Inhibit Cell Wall Synthesis
Like	Lincosamides	Clindamycin	Gram (+)	Inhibit Protein Synthesis (50s)
Germs	Glycopeptides	Vancomycin	Gram (+)	Inhibit Cell Wall Synthesis

Antibiotic Classes

Mnemonic	Groups	Medication Names		
Antibiotics Aminoglycosides		Streptomycin Gentamicin	Gram (-)	Inhibit Protein Synthesis (30s)
Can	Cephalosporins	Ceftriaxone Cefepime	Gram (+)/(-)	Inhibit Cell Wall Synthesis
Terminate	Terminate Tetracyclines		Gram (+)/(-)	Inhibit Protein Synthesis (30s)
Protein Penicillins		Ampicillin Amoxicillin	Gram (+)/(-)	Inhibit Cell Wall Synthesis
Synthesis Sulfonamides		Sulfasalazine Sulfamethoxazole	Gram (+)/(-)	Inhibit Folate Synthesis
For Fluoroquinolones		Ciprofloxacin Levofloxacin	Gram (+)/(-)	Inhibit DNA Replication
Microbial	Macrolides	Azithromycin Erythromycin	Gram (+)	Inhibit Protein Synthesis (50s)
Cells Carbapenems		Meropenem Ertapenem	Meropenem Ertapenem Gram (+)/(-)	
Like	Lincosamides	Clindamycin	Gram (+)	Inhibit Protein Synthesis (50s)
Germs	Glycopeptides	Vancomycin	Gram (+)	Inhibit Cell Wall Synthesis

Antibiotics classes Medication Names

- 1. Aminoglycosides
- 2. Cephalosporins
- 3. Tetracyclines
- 4. Penicillins
- 5. Sulfonamides
- 6. Fluoroquinolones
- 7. Macrolides
- 8. Carbapenems
- 9. Lincosamides
- 10. Glycopeptides

- 1. Mycin
- 2. Cef/Ceph
- 3. Cylines
- 4. Cillins
- 5. Sulfa
- 6. Floxacin
- 7. Thromycin
- 8. Penem
- 9. Mycin

10. In (Mycin)

Antibiotic Classes

Mnemonic	Groups	Medication Names	Gram Coverage	
Antibiotics Aminoglycosides		Streptomycin Gentamicin	Gram (-)	Inhibit Protein Synthesis (30s)
Can Cephalosporins		Ceftriaxone Cefepime	Gram (+)/(-)	Inhibit Cell Wall Synthesis
Terminate	Tetracyclines	Tetracycline Doxycycline	Gram (+)/(-)	Inhibit Protein Synthesis (30s)
Protein Penicillins		Ampicillin Amoxicillin	Gram (+)/(-)	Inhibit Cell Wall Synthesis
Synthesis Sulfonamides		Sulfasalazine Sulfamethoxazole	Gram (+)/(-)	Inhibit Folate Synthesis
For	Fluoroquinolones	Ciprofloxacin Levofloxacin	Gram (+)/(-)	Inhibit DNA Replication
Microbial	Macrolides	Azithromycin Erythromycin	Gram (+)	Inhibit Protein Synthesis (50s)
Cells Carbapenems		Meropenem Ertapenem	Gram (+)/(-)	Inhibit Cell Wall Synthesis
Like	Lincosamides	Clindamycin	Gram (+)	Inhibit Protein Synthesis (50s)
Germs	Glycopeptides	Vancomycin	Gram (+)	Inhibit Cell Wall Synthesis

Antibiotics classes Gram Coverage

<u>1. AmiNoglycosides</u>

- 2. Cephalosporins
- 3. Tetracyclines
- 4. Penicillins
- 5. Sulfonamides
- 6. Fluoroquinolones
- 7. Macrolides
- 8. Carbapenems
- 9. Lincosamides
- 10. Glycopeptides

- 1. <u>Gram (-)=NO</u>
- 2. Gram (+)(-)
- 3. Gram (+)(-)
- 4. Gram (+)(-)
- 5. Gram (+)(-)
- 6. Gram (+)(-)
- 7. Gram (+)
- 8. Gram (+)(-)
- 9. Gram (+)
- 10. Gram (+)

GLAM

Glycopeptides Lincosamides AmiNoglycosides Macrolides

Antibiotic Classes

Mnemonic	Groups	Medication Names	Gram Coverage	Mechanism of Action	
Antibiotics	Aminoglycosides	Streptomycin Gentamicin	Gram (-)	Inhibit Protein Synthesis (30s)	
Can	Cephalosporins	Ceftriaxone Cefepime	Gram (+)/(-)	Inhibit Cell Wall Synthesis	
Terminate	Tetracyclines	Tetracycline Doxycycline	Gram (+)/(-)	Inhibit Protein Synthesis (30s)	
Protein	Penicillins	Ampicillin Amoxicillin	Gram (+)/(-)	Inhibit Cell Wall Synthesis	
Synthesis	Sulfonamides	Sulfasalazine Sulfamethoxazole	Gram (+)/(-)	Inhibit Folate Synthesis	
For	Fluoroquinolones	Ciprofloxacin Levofloxacin	Gram (+)/(-)	Inhibit DNA Replication	
Microbial	Macrolides	Azithromycin Erythromycin	Gram (+)	Inhibit Protein Synthesis (50s)	
Cells	Carbapenems	Meropenem Ertapenem	Gram (+)/(-)	Inhibit Cell Wall Synthesis	
Like	Lincosamides	Clindamycin	Gram (+)	Inhibit Protein Synthesis (50s)	
Germs	Glycopeptides	Vancomycin	Gram (+)	Inhibit Cell Wall Synthesis	

Antibiotics classes Mechanism of Action

- 1. Aminoglycosides
- 2. Cephalosporins
- **3.** Tetracyclines
- 4. Penicillins
- 5. Sul**FO**namide
- 6. Fluoro**<u>quin</u>olones**
- 7. Macrolides
- 8. Carbapenems
- 9. Lincosamides
- **10. Glycopeptides**

- 1. Inhibits Protein Synthesis **P**
- 2. Inhibits Cell Wall Synthesis C
- 3. Inhibits Protein Synthesis **P**
- 4. Inhibits Cell Wall Synthesis C
- 5. Inhibits Folate = Letters Fo F
- 6. Inhibits DNA Replication
- 7. Inhibits Protein Synthesis
- 8. Inhibits Cell Wall Synthesis C
- 9. Inhibits Protein Synthesis
- **10.** Inhibits Cell Wall Synthesis

MALT

Macrolides Aminoglycosides Lincosamides Tetracyclines

D

Ρ

Ρ

Queen Elizabeth Fears DNA Test Could Damage British Monarchy?

Examples

- Doxycycline
- Meropenem
- Sulfamethoxazole

MALT Inhibits Protein Synthesis

GLAM Gram (+) Gram (-)

Mnemonic	Groups	Medication Names	Gram Coverage	Mechanism of Action
Antibiotic				
Can				
Terminate	Tetra cycline	Doxy cycline	Gram (+)(-)	Inhibits Protein Synthesis
Protein				
S ynthesis	Sul FO namide	Sulfamethoxazole	Gram (+)(-)	Inhibits Folate
For				
Microbial				
C ells	Carbapenem	Mero <mark>penem</mark>	Gram (+)(-)	Inhibits Cell Wall Synthesis
Like				
Germs				

Antibiotic Classes

Antibiotics	Aminoglycosides	Streptomycin Gentamicin	Gram (-)	Inhibit Protein Synthesis (30s)	Bacteremia, Abdominal Infections
Can	Cephalosporins	Ceftriaxone Cefepime	Gram (+)/(-)	Inhibit Cell Wall Synthesis	Skin, Urinary, Resp. Infections
Terminate	Tetracyclines	Tetracycline Doxycycline	Gram (+)/(-)	Inhibit Protein Synthesis (30s)	Lyme Disease, PID, STIs
Protein	Penicillins	Ampicillin Amoxicillin	Gram (+)/(-)	Inhibit Cell Wall Synthesis	ENT, Skin, Urinary Infections
Synthesis	Sulfonamides	Sulfasalazine Sulfamethoxazole	Gram (+)/(-)	Inhibit Folate Synthesis	UTIs, Burns, Eye Infections
For	Fluoroquinolones	Ciprofloxacin Levofloxacin	Gram (+)/(-)	Inhibit DNA Replication	Respiratory & Urinary Infections
Microbial	Macrolides	Azithromycin Erythromycin	Gram (+)	Inhibit Protein Synthesis (50s)	Pneumonia, Sinus, ENT, STIs
Cells	Carbapenems	Meropenem Ertapenem	Gram (+)/(-)	Inhibit Cell Wall Synthesis	Urinary, Abdom. Infections
Like	Lincosamides	Clindamycin	Gram (+)	Inhibit Protein Synthesis (50s)	Skin, Bone, Lung Infections
Germs	Glycopeptides	Vancomycin	Gram (+)	Inhibit Cell Wall Synthesis	MRSA, Skin, Endocarditis

