
A-Pharmacokinetics

sms of drug movement through biological membrane which include:				
rt	D) Endocytosis and exocytosis:			
nent may be Drug transporter drugs outside the	occur by drugs <i>of high molecular weight</i> . The drug binds to the cell membrane, dips in and enveloped by the cell membrane, a tear in the cell membrane allow the drug to move inside/ outside the cell. The tear is			
<u>nce</u>	healed immediately			

B) Factors related to the drug:					
id solubility	3- Valency	5- Pharmaceutical			
		preparation			
aren't absorbed e.g. <u>barium Chloride</u> d/water partition coefficient)	Ferrous iron (Fe^{+2}) is absorbed better than ferric iron (Fe+3).	 Dosage form: solution > suspension > tablet. Shape, size of particles, 			
ation	4- Nature	• rate of disintegration			
ption. <i>he medium</i> . nized → poor absorption. nized → not absorbed orally	Inorganic compounds (small particles) > organic compounds (large particles).	 and dissolution of tablets. Excepient (filler): Ca⁺² salts → ↓ oral absorption of tetracyclines 			

2- Examples:

<u>Aspirin</u> "acid" has pKa = 3.5 and pH in the stomach = 2.5 • pKa – pH = Log protonated/unprotonated So \Rightarrow 3.5-2.5 = 1 = log10/1

Pyrimethamine "base" has $\mathbf{pka} = 7$ and \mathbf{pH} of small intestine = 8 • $\mathbf{pKa} - \mathbf{pH} = \text{Log protonated/unprotonated}$. So, $\Rightarrow 7 - 8 = -1 = \log 1/10$ • So pyrimethamine is more <u>unprotonated</u>, <u>unionized</u> and <u>more lipid-soluble</u> in *small intestine*.

3- Clinical importance of pKa:

1-GIT: Aspirin "acidic drug" is mostly <u>non-ionized in the empty stomach</u> crosses the cell membrane of gastric mucosa cells In gastric mucosal cells the **pH** is alkaline, so aspirin becomes ionized "lipid-insoluble" and cannot cross the cell membrane \rightarrow trapping in

2- Kidney: In drug poisoning, renal elimination can be enhanced by changing urinary pH to increase drug ionization, decrease lipid

• <u>Alkalization of urine</u> (to increase urine pH above drug pKa) is useful in acidic drug poisoning e.g. aspirin and phenobarbital. • Acidification of urine (to decrease urine pH below drug pKa) is used in basic drug poisoning e.g. amphetamine

4- Conclusion:

• Ionized form of the drug is water-soluble and cannot pass lipid membranes except through water filled pore which is too narrow to allow

Extraction Ratio (ER) & Hepatic 1st Pass Effect

*CL*_{liver} : hepatic clearance of the drug. Q: hepatic blood flow (normally about 90 L/h in a 70-kg person)

Applications of hepatic 1st pass effect and hepatic ER:

1- Drugs with high hepatic ER (extensive hepatic 1st pass effect), e.g. nitroglycerine, have low bioavailability.

• Administration of the drug by routes other than oral route e.q. sublingual and parenteral route. • Increasing the dose.

3- extensive hepatic 1st pass metabolism with certain drug may result in toxic metabolites e.g. lidocaine \rightarrow convulsion so, not orally 4- Drugs with high ER will show marked variations in bioavailability between individuals even if given in the same doses.

- Drugs can bypass hepatic 1st pass e.g. in hepatic cirrhosis with portosystemic shunting $\Rightarrow \uparrow \uparrow$ bioavailability.

5- 1^{st} pass effect may be desirable as in case of inactive prodrugs e.g. enalapril.

	2- Distribution		3-
After absorption,	chemical alternation of drugs to convert (excreted • Drug metabolism occurs ma		
Vascular compartment	Vascular and interstitial compartments	Vascular, interstitial and intracellular compartments	• Drug metabolism occurs ma
Small volume of distribution hydrophilic most of the drug is ionized	Moderate volume of distribution hydrophilic lesser degree of ionization	Large volume of distribution lipophilic non-ionized	 Convert <u>active</u> drug to inactive <u>metab</u> Convert <u>inactive prodrug</u> into <u>active</u> Convert <u>active drug</u> to <u>active metabo</u> Convert <u>drugs</u> to <u>toxic metabolites</u> e
1 1	pid/water partition coefficient is low	lipid/water partition coefficient is high 40-42 liters in 70kg person	Glutathione deficiency may precipitate pa
4 liters m 70kg person	14 liters in 70kg person	• •	Dhaga L (functionalizat
heparin	neostigmine rs affecting distribution of d	barbiturates	Phase I (functionalizat
 1-Blood flow (perfusion): Amount of drug delivered 2-Lipophilicity (diffusion): ability of the drug to Characteristic of Lipophilic drug: 1- Well-absorbed 3- Eliminated r 3- Plasma protein binding (PPB): drug in blood - <u>PP bound form</u>: inactive, non-diffusible, and no - <u>Free form</u>: active, diffusible, and can be metaboo The two forma exist in <u>equilibrium</u> between bound <u>Characteristics of drug with high PP binding</u>: 1- PP hound fraction cannot be eliminated and 2- A drug with higher affinity can displace ano 	ered to particular organ depends on blood flo diffuse across cell membranes depends on 1 ed orally. 2- Us nainly by liver (hepatic elimination). 4- Cr exists in <i>two forms:</i> t metabolized or excreted. lized or excreted. nd and free part acts as reservoir . ther one with less affinity $\rightarrow \uparrow$ its free conce	bow to the organ ↑ blood flow → ↑ distribution ipophilicity ↑ lipophilicity → ↑ distribution sually subjected to hepatic 1st pass effect. rosses blood-brain, and placental barriers.	 The most important reaction is oxidation Result in conversion of active drug to in (sometimes convert the prodrug to active) If the metabolite is water soluble it is ex Drug Drug phase (lipophilic) Following phase I, the drug
3- Displacement from PP is clinically importan So minimal displacement → large increase	unchanged, or, most o		
4- binding to tissue constituents "tissue affinity e.g. • Chloroquine <i>is concentrated in</i> liver. •			A- Microsomal
Blood-brain harrier (BBB)	Placental barrier	Redistribution	A-Cytochrome P ₄₅₀ oxidases and their far
 Only lipid-soluble non-ionized drugs can pass blood-brain barrier. Inflammation (meningitis) →↑ permeability of DDD 		Occurs with highly lipid-soluble drugs as thiopental. After initial distribution to CNS, thiopental redistributes to less	 B- Glucuronyl transferases for conjugation 1. Physiological changes (age & sex). 3. Pharmacogenetic variation in metabolizing
BBB (concentration of penicillin & cephalosporins in t	embryotoxicity. • During labor → Neonatal asphyxia,	perfused tissues e.g. skeletal muscle and fat. ending its action.	Enzyme indu
CSF is 0.5-1% increase up to 5% in meningitis	Many drugs are able to induce the activity resulting in increased rate of metabolism microsomal enzymes as well as their own		
	Volume of Distribution Vd		
it's a hypothetical (apparent) volume of body fluid to that of plasma.	 Failure of drug action: Rifampicin "enzyme inducer" enhance and warfarin. Tolerance e.g. phenobarbitone increase induction" Increase metabolism of endogenous su 		
1- In treatment of drug toxicity:	Importance of Vd		may be used to enhance elimination of bi
 <u>Dialysis</u> is not useful for drugs with <u>high</u> <u>Hemodialysis</u> is useful for drugs with <u>lov</u> <u>Peritoneal dialysis</u> is useful for drugs with 2- Vd of a drug is directly proportionate to 3- calculation of the loading dose of a drug 4- calculation of the corrective dose of a drug 	 jaundice. 4- Drug interactions: Rifampicin enhances metabolism of war of contraception "enhance metabolism of Antiepileptics increase the metabolism of Prolonged use of enzyme inducers may osteomalacia due to increased metabolism Enzyme induction is reversible. It occur over 2 - 3 weeks after withdrawal of indu 		
(Cls = drug clear	 Phenytoin Phenobarbitone. Rifampicin Nicotine. Carbamazepine 		

Biotransformation (Metabolism)

(active, lipophilic, non-ionized) \underline{drug} to (inactive, hydrophilic, ionized) $\underline{metabolites} \rightarrow \text{easily}$ nainly in the *liver*.

#G3F

2

Consequences of drug metabolism

bolite "most drugs".

drug e.g. enalapril → enalaprilat (active) & prednisone → prednisolone (active). *polite* e.g. codeine → morphine.

.g. halothane & paracetamol \rightarrow toxic epoxides which are conjugated with glutathione. So, aracetamol or halothane hepatotoxicity.

paracetamol or halothane hepatotoxicity.					
Types of biotransform	ation reactions				
ation) reactions:	Phase II (biosynthetic "conjugation") reactions:				
eduction <i>and</i> hydrolysis on <i>by Cytochrome</i> P_{450} inactive metabolite ve drug) excreted, <i>if not, it enters phase II</i>	- Conjugation of the drug or its metabolites with endogenous substance <i>e.g.</i> glucuronic acid, sulfate, glutathione, amino acids, or acetate to form non-toxic, highly polar (ionized), water-soluble and rapidly eliminated conjugates.				
se I rug may be activated, often, inactivated.	Some drugs directly enter phase II metabolism. Conjugation products (water soluble) Conjugated drug is usually inactive.				
Metabolizing er					
enzymes	B - Non-microsomal enzymes:				
amily 1 & subfamily 2 CYP2C9 ion	Dehydrogenase, esterases (plasma) & xanthine oxidases (cytoplasm)				
Factors affecting biotr					
	2. Pathological factors (liver cell failure!).				
lizing enzymes e.g. slow and fast A	Acetylators 4. Enzyme induction & enzyme inhibition				
luction	Enzyme inhibition				
ity of microsomal enzymes n of other drug metabolized by wn metabolism	Many drugs inhibit activity of microsomal enzymes resulting in decreased rate of metabolism of other drugs metabolized by microsomal enzymes so, potentiate their pharmacological actions.				
Consequence	es				
e metabolism of progesterone	1- Exaggerated pharmacological actions.				
se its own metabolism "Auto-	2- Increased duration of action and half-life of some drugs.				
substrate e.g. phenobarbitone pilirubin in physiological					
arfarin, and may lead to failure of progesterone" of each other if combined y produce rickets or sm of vitamin D. urs over few days and passes off lucer.	3- Drug interactions.				
Example					
	$C_{i} = C_{i} = C_{i$				

- Ciprofloxacin Cimetidine CCP "Contraceptive pills"
- Allopurinol Erythromycin
- Na⁺ valproate

4- Excretion of Drugs

1-Renal "main wa	y ''	2- Milk
B) Tubular secretion:	C)Tubular reabsorption:	Important in lactating mothers
• Occurs primarily in the PCT by	• Lipophilic drugs maybe reabsorbed back	Examples of drugs contraindicated durin
energy-dependent active transport	to systemic circulation.	1- Antibiotics: Chloramphenicol, tetracyclines & sulfonamie
systems.	•Alkalization of urine by NaHC03 keeps	2- <u>CNS drugs</u> : Narcotics, benzodiazepines, alcohol & nicoti
 Active secretion occurs through: <u>acid carrier</u> e.g. for penicillin, probenecid & salicylic acid <u>basic carrier</u> for amphetamine & quinine. 	acidic drugs ionized →↑ excretion • Acidification of urine by ascorbic acid "vitamin C" or ammonium chloride →ionization of weak bases →↑ secretion	 3- Laxatives: Cascara & Senna. 4- Corticosteroids: suppresses lactation. 6- Sex hormones: 5- Bromocriptine: suppresses lactation. 6- Sex hormones: • To decrease risk to infants, lactating mothers should take a nursing or 3-4 h before next feeding. • Ph of milk is more acidic than that of plasma → basic drug milk contains more fat which leads to retention of lipid-solut metronidazole, morphine and laxatives.
	 B) Tubular secretion: Occurs primarily in the PCT by energy-dependent active transport systems. Active secretion occurs through: acid carrier e.g. for penicillin, probenecid & salicylic acid basic carrier for amphetamine & 	 Occurs primarily in the PCT by energy-dependent active transport systems. Active secretion occurs through: <u>acid carrier</u> e.g. for penicillin, probenecid & salicylic acid <u>basic carrier</u> for amphetamine & <u>basic carrier</u> for amphetamine & <u>Lipophilic drugs</u> maybe reabsorbed back to systemic circulation. <u>Alkalization of urine by NaHC03 keeps acidic drugs ionized ⇒↑ excretion</u> <u>Activity secretion</u> occurs through: <u>acid carrier</u> for amphetamine &

Parameters of Elimination

	I drameters of Elimination						
1- Kinetics Orders			2- Elimination Half-life t ¹ / ₂	3- Systemic Clearance (CLs)			
Rate of elimination	Directly proportionate to the blood concentration of drugs i.e. constant percentage of the drug is eliminated per unit of time	Zero-order kineticsConstanti.e. constant amount of drug is eliminatedper unit of time.	It is the time needed to reduce the plasma concentration of the drug to half the initial concentration "the time required for drug concentration to be changed by 50%" $t\frac{1}{2} = 0.693$ Vd/CLs	It is the volume of fluid cleared from the drug per unit of time. <i>CLs</i> = <i>Rate of elimination / Drug concentration</i> • Systemic clearance is equal to the sum of individual organ clearances i.e. clearance by liver, kidney, lungs. <i>CLs</i> = renal clearance (<i>CLr</i>) + non-renal clearance (<i>CLnr</i>)			
t½	Constant With ↑ concentration	Not constant "increase with ↑ concentration"	Factors affecting elimination t ¹ / ₂	Factors affecting drug clearance			
Css (steady state concentration)	 Repeated dosing increases drug concentration and accordingly the rate of elimination increases till the rate of administration equals the rate of elimination. At this point Css is reached. Css is directly proportionate to the dose (↑ dose →↑ Css) After 4-5 t¹/₂ more than 95% of Css is reached 	No Css is reached by repeated dosingAny change of the dose may cause toxicity.	1- State of eliminating organs i.e. liver & kidney function.2- Delivery of drugs to the eliminating organs (high Vd limits elimination)	 Blood flow to the clearing organs (<u>directly</u> proportional). Activity of clearing processes e.g. hepatic enzymes, glomerular filtration secretory processes (<u>directly</u> proportional). Plasma protein binding of the drug (<u>inversely</u> proportional). 			
Example	Most drugs obey 1 st order kinetics.	large doses of aspirin, phenytoin & ethanol	Importance of elimination t ¹ / ₂	Significance of clearance			
elimination n 1. Modest char 2. Drug-drug in 3. Drugs obeyi	Saturation kinetics follow 1 st order kinetics in small dose and zero order nechanism is said to be saturated "saturation kinetic Importance of saturation kinetic nege in dose or bioavailability may cause unexpected toxicity nteractions are common. ng saturation kinetic: phenytoin and aspirin. need monitoring of their plasma levels to avoid toxicity	cs". netics	 1- it determines the dosage interval (T). If T = t¹/₂ If T < t¹/₂ → drug <u>accumulation</u> may occur. If T > t¹/₂ → drug <u>concentration decreases</u> between doses. 2- It indicates time required to attain Css "<u>about 4-5</u> t¹/₂: If the drug is administered every "t¹/₂". After the 1st "t¹/₂", drug concentration reaches 50% of the final Css. After the 2nd "t¹/₂" drug concentration reaches 75% of the final Css. After the 3rd "t¹/₂" drug concentration reaches 87.5% of the final Css. After the 3rd "t¹/₂", drug concentration reaches 93.75% & 96.87% of the final Css. So, if the drug is given each t¹/₂ Css is reached after 4-5 t¹/₂ If t¹/₂ is very short (seconds or minutes), the drug should be given by IV infusion e.g. dopamine, dobutamine. esmolol. If t¹/₂ is very long the drug should he administered in a loading dose to reach the desired Css rapidly "in emergency cases", followed by maintenance dose to maintain the desired Css. 	 1- Calculation of the maintenance dose (MD) = CLs X Css. 2- The dosing regimen of drugs eliminated by glomerular filtration can he guided by creatinine clearance e.g. dosing of gentamicin • If kidney function is normal (creatinine clearance "CrCL" = 120 ml/min → dose is 80 mg 3 times/day. • If kidney function is impaired, you can reduce the dose or increase the dosage interval according to Cr CL: • If CrCL = 60 ml/min give half the usual dose (40 mg 3 times/day) • If CrCL = 30 ml/min give half the usual dose (20 mg 3 times/day) • Or give the usual dose every 32 hours 			
		mete	How to prolong duration of action of drugs	Notes			
		With most drugs the plasma drug concentration is less than K _m , and drug elimination is first order, that is, proportional to the drug dose.	 <u>1- Delay absorption</u>: Use sustained-release (SR) preparations. Add vasoconstrictor e.g. adrenaline to local anesthetics Use S.C. pellet implantation. Add oil to vasopressin. Use moderately soluble preparations e.g. protamine zinc insulin suspension 2- <u>Decrease metabolism</u>: use enzyme inhibitors. 3- <u>Decrease excretion</u>: probenecid → ↓ renal secretion of penicillin. 	 Loading dose: dose required to achieve desired plasma concentration (desired Css) rapidly, followed by routine maintenance dose Loading dose = Vd x desired Css Maintenance dose: The dose given to maintain the desired Css Maintenance dose = clearance x desired Css Changing the dose does not change the time needed to reach Css but changes Css. Increasing dosing frequency reduces the amplitude of swings and troughs in drug concentration but the value of Css is constant 			

rs

ing breast feeding:

nides.

otine.

ress baby's growth & immunity. s: CCP suppress lactation. e drugs immediately after

rugs accumulate in milk. Also, luble drug e.g. cytotoxic drugs,

3- Bile

• Drug excreted in bile may undergo enterohepatic cycle, \Rightarrow longer duration of action e.g. doxycycline & azithromycin • Biliary excretion of drugs increases their efficacy

in treatment of intestinal and biliary diseases

4- Lungs

e.g. volatile anesthetics.

5- Sweat

e.g. rifampicin.

6- Saliva

e.g. iodides.

B- Pharmacodynamics

Pharmacodynamics of a drug includes its pharmacological actions and their mechanism of action

Signal transduction system

Drug + receptor \rightarrow D/R complex \rightarrow response

Types of receptors

1-Ligand-gated ion 3-Receptors 2-G. Protein-Coupled receptor (GPCR) to tyrosine k channel receptor The agonist binds to the receptor that activates G protein \rightarrow dissociation of α subunit \rightarrow (+) receptors stimulation results in Insulin has 2 compor adenylate cyclase \rightarrow **†** cAMP "2nd messenger" opening of certain ionic channels. (extracellular for dru - Ach + Nicotinic receptor $\rightarrow \uparrow$ intracellular tyrosine **Type of G proteins** Na^+ influx \rightarrow depolarization activity) **G**_i "inhibitory" G_s "stimulatory" G_a protein - GABA + GABA_A receptor $\rightarrow \uparrow$ Linked to β receptor Linked to α_2 , & M₃ receptors Linked to $\alpha_2 \& M_2$ receptors Cl^{-} influx \rightarrow hyperpolarization \rightarrow Stimulation of β receptors Stimulation of these receptors - Stimulation of these receptors inhibition. (Gs- coupled receptors) \rightarrow →↓ cAMP \rightarrow (+) phospholipase C activates adenylate cyclase \rightarrow **1**P₃ & DAG. \rightarrow **CAMP** \rightarrow activates - IP₃ \rightarrow Ca⁺² release. protein kinase A **→** - DAG \rightarrow (+) protein Kinase C Phosphorylation of proteins → phosphorylation of proteins **Drugs act through 1-Receptor-mediated mechanism** Receptor: specific cellular structures, protein in nature, interact with either endogenous ligand or exogenous drug to mediate a physiological or pharmacological or Most of receptors contain more than one binding site (usually 2), the first is called **orthostatic (or catalytic)**, and the second is called **allosteric** binding site. Drug-receptor binding: Drugs must have an appropriate composition and electrical charge to interact with specific receptor (affinity). **Types of drugs acting on receptors:** Agonist Antagonist A drug that binds to the catalytic receptor (affinity). Drug binds to receptor (affinity), produces no response (efficacy=0) a It has intrinsic activity i.e. produce response (efficacy). Antagonist is the drug which has affinity without efficacy and blocks **Types of antagonists Types of agonists Full Agonist Partial agonist Inverse agonist Competitive antagonist** Non-competitive a Irreversible • The agonist and antagonist act Produce maximal • It binds to the catalytic • Most of the receptors have variable • The antagonist binds • T efficacy=1 receptor "affinity". degrees of activity in the absence reversibly to the catalytic on the same (catalytic) site, but ort agonist (constitutive activity) the antagonist binds **irreversibly** • Produces less than site of the receptor. the maximal efficacy (<1) • Some drugs bind to the receptor • Can be displaced from the (usually by covalent bond) site "affinity" Decrease the constitutive receptor by increasing the • could not be displaced from the • T even with all receptors occupied. activity "negative efficacy" concentration of the agonist receptor by increasing the of • they inhibit the effect of the full • It blocks the effect of • Decreases **potency** but concentration of the agonist. • B agonists "Inverse agonist" full agonists **not efficacy** of the agonist. not COI **Examples** Duration of antagonism depends of metoprolol on β_1 -adrenoceptor, Relative plasma the rate of synthesis of new

famotidine in H₂ receptor,

resperidone in 5-HT2 & D₂, D₃, D₄.

concentration of agonist and

antagonist

receptors

Definition

rs linked e kinase	4	4-Intrac	ellular receptors	
nponents r drug &	A. Hormone rec	ceptors:	BSoluble guanyl cyclase (sGC)	
bsine kinase Thyroid & steroid he pass through cell me ➡ bind to intracellu		embrane lar complex leus ➡ ➡ mRNA as	Nitric oxide (NO) releasing agent (nitrates, nitroprusside, Ach, and histamine) \rightarrow NO \rightarrow (+) sGC in cytoplasm of smooth muscle \rightarrow converts GTP into cGMP "2nd messenger" \rightarrow (+) protein kinase G \rightarrow intracellular phosphorylation & smooth muscle relaxation.	
		2- N	on-receptor mediated mechanism	
logical effect. ite.		1- Drugs acting on enzymes:Choline esterase inhibitors: Neostigmine.Cyclo-oxygenase inhibitors: Aspirin.2- Drugs act on plasma membrane:Digoxin inhibits membrane-bound Na ⁺ -K ⁺ ATPase		
=0) & prevents action of the agonist ocks the effect of agonists		 3- Drugs acting on genetic apparatus: Anti-cancer drugs. Antibiotics: Rifampicin. 4- Drugs acting by physical means: 		
ve antagonists		<u>Lubricants</u> : liquid paraffin used in constipation. <u>Osmosis</u> : osmotic diuretic (mannitol).		
Reversible (Allosteric)• The agonist act on the orthostatic (catalytic) site, and the antagonist acts on another site called "allosteric site".• This leads to decreased binding of the agonist to its catalytic site.• Binding of the agonist could not be enhanced by increasing its concentration.ds onthe t½ of both the agonist and antagonist		 <u>Demulcents</u>: bismuth is used to protect gastric mucosa in peptic ulcer. <u>5</u>- Drugs acting by chemical mechanism: <u>Antacids</u> neutralize HCI in peptic ulcer <u>Protamine</u> neutralizes heparin by its positive charge in heparin overdose <u>Chelation</u>: is the capacity of organic compounds to form inactive more water-soluble and easily excreted complex "chelate". Used in ttt of heavy metal poisoning e.g. <u>EDTA</u>: chelates lead and calcium m lead poisoning and hypercalcemia. <u>Desferrioxamine</u>: chelates iron in iron toxicity. <u>Penicillamine</u>: chelates copper in Wilson's disease 		

General pharmacology Dose-response relationship

The dose or concentration that produce 50% of the maximal response in graded dose response curve - Drugs with low ED ₅₀ (or EC ₅₀) are more potent than drugs with high ED ₅₀ (or EC ₅₀) are more potent than drugs with high ED ₅₀ (or EC ₅₀) - Drugs with low ED ₅₀ (or EC ₅₀) are more potent than drugs with high ED ₅₀ (or EC ₅₀) - Drugs with low	jects. g with higher LD ₅₀ . peutic window (TW) ant parameter for safety oxic dose - Minimum effective dose		
dose (↑ dose →↑ response) Effectev: ability of drug receptor complex to produce response Maximal efficacy: ability of drug receptor complex to produce response doses (↑ dose →↑ % response) Potency: the amount of the drug in relation to its effect. Example - Img of drug A produces the same response of 5mg of drug B → Drug A is more potent than drug B - EDs0 or ECs0: the dose or the concentration that cures 50% of animals in the cxp The drug with low EDs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) - The ratio between LDs0 and EDs0 - The rost important TW = Minimum toxis estimation to its effect. - Drugs with low EDs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) The calculation of child dose i.e. require smaller dose calculation of Calculation of Child dose i.e. require smaller dose Calculation of Geriatric dose 7. Tolerance: Gradual decrease in drug response inspite of the same of fight and the same o	jects. experiment. g with higher LD ₅₀ . peutic window (TW) ant parameter for safety oxic dose - Minimum effective dose		
Example - Img of drug A produces the same response of 5mg of drug B → Drug A is more potent than drug B - EDs₀ (Effective Dose s₀) or ECs₀ (effective concentration 50) - EDs₀ (Effective Dose s₀) or ECs₀ (effective concentration 50) - EDs₀ (Effective Dose s₀) or ECs₀ (effective concentration 50) The dose or concentration that produce 50% of the maximal response in graded dose response curve - The ratio between LDs₀ and EDs₀ - Drugs with low EDs₀ (or ECs₀) - The most important - Drugs with low EDs₀ (or ECs₀) - mess potent than drugs with high ED₅₀ (or ECs₀) - Drugs with low EDs₀ (or ECs₀) - mess potent than drugs with high ED₅₀ (or ECs₀) - Drugs with low EDs₀ (or ECs₀) - mess potent than drugs with high ED₅₀ (or ECs₀) - Drugs with low EDs₀ (or ECs₀) - Require most important rest₀ - The ratio between LDs₀ ant encompared of ups and hexage - The most important rule fc - The rule of ups and hexage - The most important rule fc - The rule of ups and encompared of ups and hexage - The most important rule fc - The rule of ups and encompared of ups and encompared of ups and encompared ups and encompa	experiment. g with higher LD ₅₀ . peutic window (TW) ant parameter for safety oxic dose - Minimum effective dose		
 Image of drug A produces the same response of 5mg of drug B → Drug A is more potent than drug B EDs0 (Effective Dose s0) or ECs0 (effective concentration 50) The dose or concentration that produce 50% of the maximal response in graded dose response curve Drugs with low EDs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) The compared dose response curve Drugs with low EDs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) The compared dose response curve Drugs with low EDs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) The compared dose response curve Drugs with low EDs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) The compared dose response curve The compared dose response curve The compared dose for ECs0 (or ECs0) are more potent than drugs with high EDs0 (or ECs0) The compared dose is compared dose is compared and the drug to the compared dose is com	experiment. g with higher LD ₅₀ . peutic window (TW) ant parameter for safety oxic dose - Minimum effective dose		
 - ED₅₀ (Effective Dose s₀) or EC₅₀ (effective concentration 50) The dose or concentration that produce 50% of the maximal response in graded dose response curve - Drugs with low ED₅₀ (or EC₅₀) are more potent than drugs with high ED₅₀ (or EC₅₀) - Drugs with low ED₅₀ (or EC₅₀) are more potent than drugs with high ED₅₀ (or EC₅₀) - The potency of rugs can be compared with the form the drug to the compared with drug to the compared with the drug to the compared with the drug to the compared with drug	experiment. g with higher LD ₅₀ . peutic window (TW) ant parameter for safety oxic dose - Minimum effective dose		
1- Dose: ↑ dose →↑ response 7- Tolerance: Gradual decrease in drug response inspite of the same d 2- Age: younger patients cannot tolerate adult dose i.e. require smaller dose 7- Tolerance: Gradual decrease in drug response inspite of the same d Calculation of child dose Calculation of Geriatric dose (higher doses are needed to produce the same effect) Age method Weight method (> 60 y) A) Pharmacokinetic causes: B) Pharmacokinetic causes:			
2- Age: younger patients cannot tolerate adult dose i.e. require smaller dose (higher doses are needed to produce the same effect) Calculation of child dose Calculation of Geriatric dose Causes of tolerance: Age method Weight method (> 60 y) A) Pharmacokinetic causes: B) Pharmacokinetic causes:			
Age method(> 60 y)A) Pharmacokinetic causes:B) Pharmacokinetic causes:	7- Tolerance: Gradual decrease in drug response inspite of the same dose of the drug with prolonged use (higher doses are needed to produce the same effect)		
Age includeWeight include(>00 y)A) Filar inacokinetic causes:D) FilarChild have a ge "years"Weight (kg)3 24-1			
	Pharmacodynamic causes: erance without ↓ drug level		
$\frac{70}{1-2} + \frac{70}{2} + \frac{70}{2$	sensitivity of receptors e.g. opiates. number of receptors (Down- g. β . Agonists. number of receptors (Up-regulation) rs. of neurotransmitters e.g. dopamine amantadine teristics of acquired tolerance: ect all actions to the same extent colerance to analgesia & R.C at not to constipation or miosis).		

Adverse drug reactions

Harmful effects of drugs which may require reduction of the dose, drug withdrawal or in

Type A (Augmented adverse effects)

1- Drug intolerance	2- Side effects	3-0
At sub-therapeutic dose	At therapeutic dose	At higher do
Exaggerated response to small doses of the drug."	Pharmacological action occurs in every person, dose-related	Exaggerated pharmaco
supersensitivity"	and predicted.	

Type <u>B</u> (Bizzare adverse effects)

A- Hypersensitivity

|--|

Drug Allergy

- Allergic reactions are adverse effects mediated by **immunogenic** mechanism. - Most of drugs act as incomplete antigen or hapten Drug allergy is **dose-independent** unpredicted and occur in minority of natients

Cross-allergy may occur with a group of chemica

- Drug anergy is uose-muependent, unpredicted an	d occur in minority of patients Cross-anergy may occur w	in a group of chemically rela
1- Type 1 (immediate type, anaphylactic)	2- Type II allergic reactions	3- Type III allergi
allergic reactions		
 IgE-mediated May be in the form of asthma, anaphylaxis, drug rash or angioedema. e.g. Penicillin. Treatment of anaphylactic shock: Adrenaline IM. 	 IgG or IgM antibodies are fixed to circulating blood cells producing complement-dependent lysis reaction. e.g. autoimmune hemolytic anemia (methyl dopa) & Thrombocytopenia (heparin) & agranulocytosis (chloramphenicol) 	- IgG -mediated. Ag-Ab complex capillary bed. Reaction may be: serum sickness (penicillin & Sulphonamides).
Antihistaminic IM or IV. Corticosteroid IM or IV.		(pennemini & Surphonannides).

B-Idiosyncrasy

Genetically mediated adverse effects e.g. favism.						
Pharmacogenetic Disorders						
Abnormal drug response due to genetic abnormality. Genetic abn	Abnormal drug response due to genetic abnormality. Genetic abnormalities that are discovered only by the effect of drugs.					
	nolytic anemia due to	ytic anemia due to 3- Porphyria		ccinyl Choline apnea	5- Malignant Hyperthermia	
	G6PDdeficiency					
	ciency 🔶 hemolysis in	phenobarbitone increases the activity		in pseudocholinesterase	Genetic disorder in which skeletal muscles	
-	f some oxidant drugs as	of ALA synthetase_enzyme $\rightarrow \uparrow$ level	• 1	nsible for succinylcholine	fail to sequester Ca ⁺² in sarcoplasmic	
	al, aspirin, Sulphonamides	of porphyrins \rightarrow severe neurological	hydrolysis →accumulation of succinylcholine		reticulum following administration of	
• Drugs accumulate in the <u>slow Acetylators</u> and produce toxic and fava b	eans.	disturbances and may cause death. →Respiratory muscle paralysis and apnea.		succinylcholine and/or halothane.		
effects. e.g. Isoniazid → neuropathy (in slow acetylators)					result in marked muscle rigidity and fever.	
Type <u>C</u> (<u>C</u> hronic adverse effects)	Туре	Type D (Delayed adverse effects)		Type <u>E</u> (End	of use adverse effects)	
1-Tolerance.	May occur after sto	May occur after stoppingdrug.		1- Abstinence (withdrawal	syndrome): occurs in drug-dependent	
2- Drug dependence:	1- Mutagenicity: d	1- Mutagenicity: drug-induced gene abnormalities.		persons (addict) following withdrawal of narcotics.		
• Habituation (Psychic dependence).	2- Carcinogenicity	2- Carcinogenicity: drug-induced neoplasm.		2- Hypertension following clonidine withdrawal		
• Addiction (Psychic & Physical dependence). Sudden stop	3- Teratogenicity :	3- Teratogenicity: drug-induced fetal abnormalities when given 3- Thromboembolism following anticoagulant withdrawal			owing anticoagulant withdrawal.	
Withdrawal syndrome.						
3- latrogenic diseases (drug-induced diseases): Corticosteroids, • Thalidomide → phocomelia.						
Diabetes, hypertension osteoporosis						

	#G3FR_6
· immediate treatment.	
- Overdose	4- Toxic effect
r dose> therapeutic	At very high doses
acological action.	hepatotoxicity with acetaminophen.
ugs that act as antigen.	
en.	
cally related drugs.	
II allergic reactions	4- Type IV (delayed type or cell- mediated) allergic reactions
Ab complex is deposited in	
m sickness, glomerulo-nephritis	Mainly contact dermatitis (Sulphonamides).

Drug Interactions

Pharmacological responses that result when multiple drugs are used concurrently

Drug interactions may result in

Drug interactions may result in										
Synergism	Sı	ummation Potentiation Antagonism								
The combined effect is	Th com	bined effect • A drug, when applied alone, has no		when applied alone, has no	one drug decreases the effect of another one					
more than the sum of their	equals the	-		lowever, it can potentiate the			Types of antagonism:			
		effects of	other agents.	Chemical antagonism		Physiological antagon	ism Pharm	Pharmacological antagonism		
	• example		_	• <u>Neutralization</u> : protamine & (2 age		onists + 2 Receptors \rightarrow	<u>2</u> • <u>Pharmaco</u>	Pharmacokinetic antagonism		
• enzyme		nhibitors $\rightarrow \uparrow$ activity of	heparin oppos		osing actions) (absorpt		n & metabolism)			
			other drug	S	• <u>Chelation</u> : Desferrioxamine & •Adrenaline + bronchod		enaline broncho <u>dilata</u>	\bullet Pharmacodynamic antagonism		
		• benzodia	zepines facilitate the effect	iron & His				lock): may be		
		at GABA _A receptors.				competitive or non-competitive				
Mechanisms of drug interaction										
1- Pharmacokinetic Interactions							2- Pharmacodyna	amic Interactions	3- Pharmaceutical	
A- Interactions at the site of B- Interactions d		s during	C-Interactions at sites of	C-Interactions at sites of		A- Synergistic	B-Antagonistic	Interactions		
absorption (before absorp	otion):	distributi	• •	biotransformation:	excretion		interactions:	interactions:		
1- <u>Tetracyclines</u> absorption is decreased 1- Competition for PPB sit		PPB sites:	1-enzyme inducers:	1- <u>Alkalization of urine</u> → increases		• Benzodiazepine-	α-blockers, β-blockers	Incompatibilities		
by Ca^{+2} , Mg^{+2} and Al^{+3} containing <u>see before</u>			Rifampicin ➡			induced CNS depression	and opiate antagonists	occurring outside the		
antacids. 2- Direct interactions in plasma		ns in plasma	$ ral contraceptives \rightarrow pregnancy. \qquad decrease tubular reabsorption \rightarrow $			is potentiated by alcohol.	block the effects of thei	body		
2- Drugs that <u>alter GIT motility</u> influence or tissues:			• Phenytoin →↑ metabolism of increases excretion			• <u>Digitalis</u> -induced	agonists	5		
the rate and extent of absorption of other • Protamine & heparin			vitamin D \Rightarrow osteomalacia (useful in treatment of toxicity).			bradycardia is				
drugs e.g.(chemical neutralization).•Anticholinergics →↓Motility →3- Competition/or tissue		 2. <u>enzyme inhibitors</u>: Erythromycin →↓ metabolism 2- <u>Acidification of urine</u> → increases ionization of basic dugs (amphetamine) 			exaggerated by β - blockers and verapamil					
↓ absorption of other drugs binding sites:		of theophylline	 Decrease tubular reabsorption 		bioekers and verapanni					
• <u>Prokinetics</u> \rightarrow f motility \rightarrow		• Increase plasma d	igoxin by	• Ciprofloxacin →↓ metabolisr	-					
1 absorption of other drugs.		concurrent quinidin		of theophylline & warfarin.	toxicity.					
3- Drugs that <u>change PH</u> of the gu					3- <u>Probenecid</u> competes with pen					
contents can also affect the rate of					for renal tubular excretion \rightarrow in					
absorption of other drugs by affect	cting				its excretion & prolongs its actio	on.				
drug ionization.										
Beneficial drug interactions										

Denencial ut ug inter actions

They are drug combination that; 1- Have different mechanisms of action. 2- Correct undesirable reactions of each other. Example: multiple drug therapy for treatment of hypertension, CHF & T.B.

nail: Ibrahim gaafar@hotmail.com cebook: https://www.facebook.com/ibrahim.ga3far ione & WhatsApp: +201144148853

#G3FR 7