The Cell

Drolman Nabil

Concentratf ¿' \& 'ic eeu' inside secretory gran le.

Leave the cell membrane immediately after their synthesis. No secretory granules.

Rough endoplasmic reticulum
Smooth endoplasmic reticulum
Not seen but in large amount give cytoplasmic acidophilia.

Interconnected branching tubules and \downarrow ?sicles.
Vc ribosomes.
1- Synthesis of lipid \& cholesterol of the cell membrane.
2- Synthesis of steroid hormones.
3- Synthesis of glycogen.
4- Detoxification of toxic substances.
5 -Storage of calcium in muscles.
Steroid secreting cells, liver \& muscles.
t rotein secreting cells e.g. liver, fibroblasts.

1-Site

Periphery of cytoplasm.
Receptor ligand complex.

Deep in cytoplasm, near Golgi.
1- Ligands from early endosome. 2- Lysosomal enzymes from Golgi.

Uncoupling of the receptor from ligand.

Less than 6.

L 'sosomal enzymes begin to degrade 'ig, nds, then the late endosome matures tu lysosome.
5.5.

Energy producing organelles
1- LM
1- LM
影
3- Function

Mitochondria

Peroxisome

Not seen. cause cytoplasmic acidophilia.
By special stain (silver stain) appear as brownish granules.

Double membrane: outer is smooth and inner is folded into cristae enclosed matrix space.

Production of energy \& stor, it \ldots. the form of ATP.

SI igle membrane enclosed fine granular i rrients.

1- Produce energy \& released it in the form of heat (unable to store it).

2- Produce hydrogen peroxide.
3 - convert excess hydrogen peroxide into water.
4- Detoxification of toxic substances.
All body cells except red blood cells \& keratinocytes.

Many cells especially liver.

Nuclear DNA

Filaments.

Represents $\% \%$ rine total DNA of the Represents 1% of Total DNA of the cells. cells.

C1 cular.
Mitochondrial DNA

3- Function

Encoding synthesis of most of the proteins Limited coding capacity, encoding some inside the cytoplasm.
of the structural proteins of the mitochondria.

How do mitochondria adapt to its function?

1- Outer membrane: smooth \&porous contains mitochondrial porins allow easy passage of small molecules.
2- Inner membrane is folded into numerous cristae \longrightarrow increase surface area for energy production.
3- Inner membrane contains cardiolipin \longrightarrow make it highly impermeable to ions \& small molecules.
4- Matrix space: contains enzymes for citric acid cycle, mito DNA \& ribosomes \longrightarrow synthesize some of their structural proteins, also contains matrix granules \longrightarrow store Ca thus play an important role in regulation of intracellular Ca concentration.

Types of cytoskeleton	Microfilaments	Microtubules	Intermediate filaments
1- diameter	7 nm .	25 nm .	10 nm .
2- LM	Seen only by immunohistochemistry.	Seen only by immunohistochemistry.	Seen only by immunohistochemistry.
3-EM	Thin electron dense filaments.	Fine tubules.	Thicker electron dense filaments.
4- Structural proteins	Monomers of G actin polymerize to form F actin.	protc ${ }^{\text {illa }}{ }^{\text {r. }}$, ?nw. $\perp^{?}$ proi ofilaments form a microtubule,	Woven ropes.
5- Functions	Dynamic 1- Muscle contra tiu n. 2-Cr. .t. cl le ring in cell divisı n. 3- Psel.uopodia in migration. 4- Microvilli. 5- Cytoplasmic streaming.	Dynamic. 1- Transport of organelles \& vesicles. 2- Formation of centrioles, cilia \& flagella.	Not dynamic. Structural support.

Types of cell division

Mitosis
Somatic cells Germ cells of testis \& ovaries

Single division

Preceded by interphase with S phase

No crossing over
46 d chromosomes arranged indı idı ally at the equatorial plane of the colls.

Each chromorsme liv. des at centromere into 2 chron atid:

Two dal ${ }^{2}$.cer cells with diploid number of chromosomes (46 S)
Daughter cells are genetically identical

1- Growth and development of the organism.
2- Renewal and repair of cells.

Meiosis

Germ cells of testis \& ovaries
2 successive divisions: Meiosis I \& Meiosis II.

Meinsı. I preceded by interphase with S phase, Meio: 's ، not preceded by S phase.

Meiosis I: Crossing over occurs
In Meiosis I:23 bivalent arranged at the equatorial plane of the cells.

In Meiosis I: each chromosome of a bivalent moves apart.
Four daughter cells with haploid number of chromosomes (23 S)
Daughter cells are genetically variable.

Formation of gametes.

Absent (the cell enter the prophase with 23 d chromosomes).

No pairing
No crossing over.

23 d chromosomes arranged individually at the equatorial plane of the cells.

Centromere splits so each chromatid moves independently to the opposite pole of the cell.

Cytokinesis results in 4 daughter cells each with 23 S chromosomes.

Types of cell death
Necrosis
Apoptosis
1- Type

2- Cell membrane
Pathological.
Damage with loss of its integrity.

$3-$ Organelles	Broken down.

4- Proteins
Denatured or coagulated.

5- Apoptotic bodies	Absent
	Preset

6- inflammation
Present

Physiological.
Change of some characters without loss of its integrity.
ntact.
$3 r$ ken down of DNA with hypercondensation of chromatin.

Present
Absent

