

The Cell

Dr.Iman Nabil

Types of endocytosis	Pinocytosis	Receptor mediated endocytosis	Phagocytosis
1- Endocytosed material	Fluid containing ions & small molecules.	Specific substances e.g. hormone.	Large solid particles e.g. bacteria.
2- Receptor-mediated	No receptors.	Receptor mediated(highly selective)	Receptor mediated.
3- shape of the vesicle	Small& smooth.	Coated with clathrin.	No coated vesicle, instead the membrane fused to form phagosomes.
4- Type of cells	Nearly all cell types especially endothelium of blood vessels.	Specific cen that has receptor for specific substance.	Phagocytic cell.
5- Pathway	Early endosome \rightarrow hate endosome \rightarrow house some.	Early endosome \rightarrow late endosome \rightarrow lysosome. coated	Late endosome → lysosome.
	PINOCYTOSIS	vesicle	Antibody (IgG) Antibody

Types of exocytosis	Regulated secretion	Constitutive secretion
1- stimulus	Stimulus dependent.	No stimulus. They released continuously.
2- Secretory product	Concentrated & scored inside secretory grantlet	Leave the cell membrane immediately after their synthesis. No secretory granules.
3- Example of the released secretion	Digestive enzymes from pancreatic cell.	Antibodies from plasma cell, & collagen from fibroblast.

Types of Hoosomes	The solitary housonies	(polysomes)	
1- LM		Not seen but in large amount give cytoplasmic basophilia.	Not seen but in large amount give cytoplasmic basophilia.
2- EM	Small electron dense particles.	10 or more ribosomes connected by a single strand of mRNA.	Small electron dense particles attached to rER.
3- Function	Reserve.	Synthesis of cytosolic proteins (used within the cell)	Synthesis of secretory proteins, lysosomal enzymes& membrane proteins.

Types of endoplasmic reticulum	Rough endoplasmic reticulum	Smooth endoplasmic reticulum
1- LM	Not seen but in large amount give cytoplasmic basophilia.	Not seen but in large amount give cytoplasmic acidophilia.
2- EM	Parallel, flattened interconnected tubules. Studded with ribosomes.	Interconnected branching tubules and vesicles. No ribosomes.
3- Functions	 1- synthesis of secretory proteins, lysosomal enzymes& memorane proteins. 2- Post translational modification of protein. 3- Transport protein to Golgi. 	 Synthesis of lipid & cholesterol of the cell membrane. Synthesis of steroid hormones. Synthesis of glycogen. Detoxification of toxic substances. Storage of calcium in muscles.
4- Sites	Frotein secreting cells e.g. liver , fibroblasts.	Steroid secreting cells, liver & muscles.

Types of endosomes	Early endosome	Late endosome
1-Site	Periphery of cytoplasm.	Deep in cytoplasm , near Golgi.
2- Content	Receptor ligand complex.	 Ligands from early endosome. Lysosomal enzymes from Golgi.
3-Function	Uncoupling of the receptor from ligand.	L sosomal enzymes begin to degrade 'ig. nds, then the late endosome matures to lysosome.
4- рН	Less than 6.	5.5.
Re yr	phor ling to sma brane Receptor recycling	cytotic sicle urly endosome Late endosome Lysosome Cysosome Acid hydrolase nnose 6-P receptor

Energy producing organelles	Mitochondria	Peroxisome
1- LM	Not seen by H&E except in large amount cause cytoplasmic acidophilia. By special stain (silver stain) appear as brownish granules.	Not seen.
2- EM	Double membrane: outer is smooth and inner is folded into cristae enclosed matrix space.	Single membrane enclosed fine granular contents.
3- Function	Production of energy & storvit m the form of ATP.	 Produce energy & released it in the form of heat (unable to store it). Produce hydrogen peroxide. convert excess hydrogen peroxide into water. Detoxification of toxic substances.
4- sites	All body cells except red blood cells & keratinocytes.	Many cells especially liver.
		remeries of the second se

Types of DNA	Nuclear DNA	Mitochondrial DNA
1-Shape	Filaments.	C. cular.
2- Percentage	Represents \$3% or the total DNA of the cells.	Represents 1% of Total DNA of the cells.
3- Function	Encoding synthesis of most of the proteins inside the cytoplasm.	Limited coding capacity, encoding some of the structural proteins of the mitochondria.

How do mitochondria adapt to its function?

1- Outer membrane: smooth & porous contains mitochondrial porins allow easy passage of small molecules.

2- Inner membrane is folded into numerous cristae — increase surface area for energy production.

3- Inner membrane contains cardiolipin _____ make it highly impermeable to ions & small molecules.

4- Matrix space: contains enzymes for citric acid cycle, mito DNA & ribosomes \longrightarrow synthesize some of their structural proteins, also contains matrix granules \longrightarrow store Ca thus play an important role in regulation of intracellular Ca concentration.

Types of cytoskeleton	Microfilaments	Microtubules	Intermediate filaments
1- diameter	7 nm.	25 nm.	10 nm.
2- LM	Seen only by immunohistochemistry.	Seen only by immunohistochemistry.	Seen only by immunohistochemistry.
3- EM	Thin electron dense filaments.	Fine tubules.	Thicker electron dense filaments.
4- Structural proteins	Monomers of G actin polymerize to form F actin.	Tubulin cimer, or merize to proto ^s ila rents. 13 protofilaments form a microtubule,	Woven ropes.
5- Functions	 Dynamic 1- Muscle contraction. 2- Connect le ring in cell division. 3- Pseudopodia in migration. 4- Microvilli. 5- Cytoplasmic streaming. 	Dynamic. 1- Transport of organelles & vesicles. 2- Formation of centrioles, cilia & flagella.	Not dynamic. Structural support.
	$ \begin{array}{c} - \operatorname{end} \\ \bullet \\ \bullet \\ G \text{ actin} \end{array} \begin{array}{c} \bullet \\ D \text{ imer} \end{array} \begin{array}{c} \bullet \\ T \text{ imer} \end{array} \begin{array}{c} - \operatorname{end} \\ \bullet \\ T \text{ imer} \end{array} \begin{array}{c} + \operatorname{end} \\ F \text{ actin} \end{array} \begin{array}{c} + \operatorname{end} \\F \text{ actin} \end{array} \begin{array}{c} + $	Gross section Microtubule	Monomer Dimer Dimer Sheet of 8 Tetramers Sheet of 8 Tetramers Sheet of 8 Tetramers

Types of chromatin	Heterochromatin	Euchromatin
1- LM	Dense basophilic clumps.	Lightly stained basophilic areas.
2- EM	Electron dense filaments or granules distributed in: 1- around nucleolus. 2- associated with inner nuclear membrane. 3- swimming in nuclear sat	Dispersed fine filaments or granules.
3- Function	Inactive part acts as a meserve (transformed into cuchromatin when needed).	Active part (transcribed into RNA).
4- Site	h active cells.	Active cells e.g. dividing cells.

Types of cell division	Mitosis	Meiosis
1-Types of cells	Somatic cells	Germ cells of testis & ovaries
2- Number of division	Single division	2 successive divisions: Meiosis I & Meiosis II.
3- Interphase	Preceded by interphase with S phase	Meiosi, I preceded by interphase with S phase, Meiosis I' not preceded by S phase.
4- Prophase	No crossing over	Meiosis I: Crossing over occurs
5-Metaphase	46 d chromosomes arranged individually at the equatorial plane of the colls.	In Meiosis I :23 bivalent arranged at the equatorial plane of the cells.
6- Anaphase	Each chromosome livides at centromere into 2 chron atide	In Meiosis I: each chromosome of a bivalent moves apart.
7- Cells produced	Two daughter cells with diploid number of chromosomes (46 S) Daughter cells are genetically identical	Four daughter cells with haploid number of chromosomes (23 S) Daughter cells are genetically variable.
8- Functions	 Growth and development of the organism. Renewal and repair of cells. 	Formation of gametes.

Meiosis	Meiosis I	Meiosis II
1- Preceded S phase	Present (the cell enter the prophase with 46 d chromosomes).	Absent (the cell enter the prophase with 23 d chromosomes).
2- Prophase	Pairing of homologous chromesorae result in 23 tetrad. Crossing over occurs between each tetrad.	No pairing No crossing over.
2- Metaphase	23 tetrad arranged at the equatorial plane of the ceris.	23 d chromosomes arranged individually at the equatorial plane of the cells.
3- Anaphase	No division of the centromere. Each chromosome moves independently to the opposite pole of the cell.	Centromere splits so each chromatid moves independently to the opposite pole of the cell.
4- Telophase	Cytokinesis results in 2 daughter cells each with 23 d chromosomes.	Cytokinesis results in 4 daughter cells each with 23 S chromosomes.

Types of cell death	Necrosis	Apoptosis
1- Туре	Pathological.	Physiological.
2- Cell membrane	Damage with loss of its integrity.	Change of some characters without loss of its integrity.
3- Organelles	Broken down.	intact.
4- Proteins	Denatured or coagulated.	3rc ken down of DNA with hypercondensation of chromatin.
5- Apoptotic bodies	Absent	Present
6- inflammation	Present	Absent
	Ner. is Dissolution of cellular structures	Cell blebs violently Chromatin condensation continues Continues Continues Cell fragments into membrane- enclosed apoptotic bodies Cell fragments into membrane- enclosed apoptotic bodies

