RONE BY : BANDAB AL - SHWABKAH

Motion in a straight line

- Position (x) : it's the distance from the origin
- Displacement $(\Delta x): \Delta x=x_{f}-x_{i}$
- Average velocity $(\bar{v}):(\bar{v})=\Delta x / \Delta t$
- Average speed (speed) :
- speed= total distance/total time

- Instantaneous velocity (v) :
- $V=\lim \Delta x / \Delta t=d x / d t$ $\Delta t \rightarrow 0$

Example :

- $X(4)=25, x(6)=5$, On the interval $[0,8]: 15$

- Solution :

- $\overline{\mathrm{V}}=\Delta x / \Delta t=x(8)-x(0) / 8-0=(5-0) / 8=5 / 8 \mathrm{~m} / \mathrm{s}$
- Average speed $=$ total distance/total time $=(25+20+0) / 8=45 / 8=5.6 \mathrm{~m} / \mathrm{s}$
- $\mathrm{V}(2)=\mathrm{dx} / \mathrm{dt} \mid=$ slope $=(25-0) / 4-0=6.25 \mathrm{~m} / \mathrm{s}, \mathrm{v}(5)=(5-25) / 6-4=-10 \mathrm{~m} / \mathrm{s}$

$$
t=2
$$

- Example : a particle moves a long the x - axis according to the expression - $x(t)=2 t^{2}-4 t$, where X in meter and T in second :
- 1) determine the displacement of the particle in the time interval $t=1 \mathrm{~s}$ to $\mathrm{t}=3 \mathrm{~s}$
- 2) calculate the average velocity in the same interval and the average speed
-3) find the instantaneous velocity of the particle at $t=2.5 \mathrm{~s}$
-4) find the average velocity and speed solution in the interval $[0,3]$

- To be continued

Solution :
1)

- $X(1)=2-4=-2 m$
- $x(3)=\left(2^{*} 9\right)-\left(4^{*} 3\right)=6 \mathrm{~m}$
- $\Delta x=x(3)-x(1)=6-(-2)=8 m$
- 2)
- Average velocity : $\bar{v}=\Delta x / \Delta t=x(3)-x(1) / 3-1=8 / 2=4 \mathrm{~m} / \mathrm{s}$
- Average speed $=$ total distance $/$ total time $=(2+6) / 3-1=8 / 2=4 \mathrm{~m} / \mathrm{s}$
-3)
- $\mathrm{V}=\mathrm{dx} / \mathrm{dt}=4 \mathrm{t}-4$
- $V(2.5)=\left(4^{*} 2.5\right)-4=6 \mathrm{~m} / \mathrm{s}$
-4)
- $[0,3] \ldots . . . \bar{v}=x(3)-x(0) / 3-0=(6-0) / 3=6 / 3=2 \mathrm{~m} / \mathrm{s}$
- Average speed $=(2+2+6) / 3=10 / 3=3.34 \mathrm{~m} / \mathrm{s}$

Acceleration

- Average acceleration ($\overline{\mathrm{a}}): \overline{\mathrm{a}}=\Delta \mathrm{v} / \Delta \mathrm{t}$
- Instantaneous acceleration : a = dv/dt

- $\bar{a}=\Delta v / \Delta t=\left(v_{f}-v_{i}\right) / t_{f}-t_{i}$
- $\mathrm{a}=\mathrm{dv} / \mathrm{dt}=$ slope

- Example : the velocity of a particle moving a long the x-axis varies in the time according to the expression: $v(t)=\left(40-5 t^{2}\right) \mathrm{m} / \mathrm{s}$
-1) find the average acceleration in the interval $t=0 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$
- 2) what is the acceleration at $t=2 \mathrm{~s}$
- Solution:
-1)
- $\bar{a}=\Delta v / \Delta t=v(2)-v(0) / 2-0=(20-40) / 2=-10 \mathrm{~m} / \mathrm{s}^{2}$
- 2)
- $a(t)=d v / d t=-10 t$
- $a(2)=-20 \mathrm{~m} / \mathrm{s}^{2}$

One dimensional motion with constant acceleration

- For constant acceleration in the interval $[0, t]$
- $\bar{a}=a=\Delta v / \Delta t=\left(v-v_{0}\right) / t$
- $V=v_{0}+a t$
- In the same interval : $v=\left(v+v_{0}\right) / 2$
- Substitute eq.(1) in eq.(2)
- $V=\left(v_{0}+v_{0}+a t\right) / 2=v_{0}+1 / 2 a t$

- But from the definition of $\bar{v}=\Delta x / \Delta t=\left(x-x_{0}\right) / t$ we find :
- $\bar{V}=\left(x-x_{0}\right) / t=v_{0}+1 / 2$ at
- $X-x_{0}=v_{0} t+1 / 2 a t^{2}$
- $x=x_{0}+v_{0} t+1 / 2 a t^{2}$

- Again :

- $\overline{\mathrm{V}}=\left(\mathrm{v}+\mathrm{v}_{0}\right) / 2=\left(\mathrm{x}-\mathrm{x}_{0}\right) / \mathrm{t}$
- $\mathrm{X}-\mathrm{x}_{0}=\mathrm{t} / 2$ * $\left(\mathrm{v}+\mathrm{v}_{0}\right)$..... And substitute for t from eq. 1 :
- $\mathrm{X}-\mathrm{x}_{0}=1 / 2 *\left(\mathrm{v}-\mathrm{v}_{0}\right) / a *\left(\mathrm{v}+\mathrm{v}_{0}\right)=\left(\mathrm{v}^{2}-\mathrm{v}_{0}{ }^{2}\right) / 2 a$
- $v^{2}=v_{0}^{2}+2 a *\left(x-x_{0}\right)$

- Results for constant acceleration :

- $V=v_{0}+a t$
- $X=x_{0}+v_{0} t+1 / 2 a t^{2}$
- $V^{2}=v_{0}{ }^{2}+2 a *\left(x-x_{0}\right)$
- Example : an object accelerates from rest to speed of $128 \mathrm{~m} / \mathrm{s}$ in 8 s .
-1) determine the acceleration
- 2) find the distance it travels in 8 s
-3) what is the velocity after 10 s ?
- 4) after how long time it will travels a distance of 1600 m ?

- Solution :

-1) $v=v_{0}+$ at $. . .128=0+8 a \ldots . . . a=128 / 8=16 \mathrm{~m} / \mathrm{s}^{2}$

- 2) distance $=\Delta x=x-x_{0}=v_{0} t+1 / 2 a t^{2} \ldots . . . \Delta x=0+\left(1 / 2 * 16 * 8^{2}\right)=512 m$
-3) $v=v_{0}+$ at $=0+(16 * 10)=160 \mathrm{~m} / \mathrm{s}$
- 4) $\Delta x=v_{0} t+1 / 2 a t^{2} \ldots . .1600=0+\left(1 / 2 * 16 * t^{2}\right) T^{2}=1600 / 8=200$
- $\mathrm{T}=\sqrt{200}=14.14 \mathrm{~s}$
- Example : a particle moves from rest with a constant acceleration $5 \mathrm{~m} / \mathrm{s}^{2}$, find :
-1) its velocity after 3s
- 2) its displacement after 3 s
- 3) after how long time it will travel a distance of 100 m and what is the velocity at this time ??

- Solution :

-1) $v=v_{0}+$ at $\ldots . . . V=0+\left(5^{*} 3\right)=15 \mathrm{~m} / \mathrm{s}$

- 2) $\Delta x=v_{0} t+1 / 2 a t^{2} \ldots \ldots . .=0+(1 / 2 * 5 * 9)=22.5 \mathrm{~m}$
- 3) $\Delta x=v_{0} t+1 / 2$ at $^{2} \ldots \ldots . .100=0+\left(1 / 2 * 5 * t^{2}\right) \ldots . . . t=\sqrt{200 / 5}=6.3 \mathrm{~s}$
- $v=v_{0}+$ at $0=5 * 6.3=31.5 \mathrm{~m} / \mathrm{s}$

Freely falling bodies

- In this case the object moves under the influence of gravity ($\mathrm{F}=-\mathrm{mg}$) with a constant acceleration of (-g)
- Therefore the equations of motion can be obtained as :
-1) $v=v_{0}-g t$

$$
\begin{aligned}
& a=-9 \\
& 9=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

- 2) $y=y_{0}+v_{0} t-1 / 2 g t^{2}$
-3) $v^{2}=v_{0}^{2}-2 g *\left(y-y_{0}\right)$
- Note : choose $\mathrm{y}_{0}=0$ as the initial position at $\mathrm{t}=0$
- Example : a freely falling body starts its motion from rest , calculate its position and velocity at :
-1) $t=1 s, 2 s, 3 s$ respectively ?

- Solution :

- At $t=1 \mathrm{~s}$
- $\mathrm{Y}=\mathrm{v}_{0} \mathrm{t}-1 / 2 \mathrm{gt} \mathrm{t}^{2}=0-(1 / 2 * 9.8 * 1)=-4.9 \mathrm{~m}$
- $\mathrm{V}=\mathrm{v}_{0}-\mathrm{gt}=0-\left(9.8^{*} 1\right)=-9.8 \mathrm{~m} / \mathrm{s}$
- At t=2s
- $\mathrm{Y}=\mathrm{v}_{0} \mathrm{t}-1 / 2 \mathrm{gt}^{2}=0-(1 / 2 * 9.8 * 4)=-19.6 \mathrm{~m}$
- $\mathrm{V}=\mathrm{v}_{0}-\mathrm{gt}=0-(9.8$ * 2$)=-19.6 \mathrm{~m} / \mathrm{s}$
- At $t=3 s$
- $\mathrm{Y}=\mathrm{v}_{0} \mathrm{t}-1 / 2 \mathrm{gt}^{2}=0-(1 / 2 * 9.8 * 9)=44.1 \mathrm{~m}$
- $V=v_{0}-g t=0-(9.8 * 3)=29.4 \mathrm{~m} / \mathrm{s}$
- Example : a stone is thrown upward with initial velocity of $20 \mathrm{~m} / \mathrm{s}$, find :
-1) the maximum height
- 2) the time needed to reach the maximum height
-3) the time needed for the stone to return to the level of thrower
-4) the velocity of the stone at this instant
-5) the velocity and position at $\mathrm{t}=2.5 \mathrm{~s}$

$$
V_{0}=20
$$

- Solution:

- 1) $v^{2}=v_{0}^{2}-2 g y0=20^{2}-(2 * 9.8 y) \ldots . . Y=20.4 m$
- 2) $v=v_{0}-g t0=20-9.8 t ~ T=2.04 \mathrm{~s}$
- 3) $\mathrm{y}=\mathrm{v}_{0} \mathrm{t}-1 / 2 * \mathrm{gt}^{2} \ldots \ldots . .0=20 \mathrm{t}-1 / 2 * 9.8 \mathrm{t}^{2} \ldots . .0=(20-4.9 \mathrm{t}) * \mathrm{t} \ldots . . \mathrm{t}=0, \mathrm{t}=4.08 \mathrm{~s}$
- 4) $v=v_{0}-g t \ldots \ldots . . v=20-(9.8 * 4.08)=-20 \mathrm{~m} / \mathrm{s}$
- 5) $v=v_{0}-g t v=20-(9.8 * 2.5)=-4.5 \mathrm{~m} / \mathrm{s}$
- $Y=v_{0} t-1 / 2 \mathrm{gt}^{2} \ldots \ldots . . . \mathrm{Y}=20 * 2.5-\left(1 / 2 * 9.8 * 2.5^{2}\right)=19.37 \mathrm{~m}$

