RQNE BY ;
 BANDAB AL-SHWABKAH

Newton's laws of motion

- Force : any influence that cause the object to accelerate
- Newton's first law : an object at rest will remain at rest and an object in motion with constant velocity in a straight line will maintain that motion unless it experience a net external force
- Newton's second law : the acceleration of an object is directly proportional to the resultant force acting on it and inversely proportional to its mass $\overrightarrow{\Sigma f}=m \vec{a}$
- Newton's third law : to every action there is always an equal and opposite reaction $\vec{f}_{12}=\vec{f}_{21}$
- Equilibrium : an object is at equilibrium if the resulting forces on it are zero
- $\overrightarrow{\Sigma f}=0$
- Weight : the force exerted by the earth on a body
- $\mathrm{W}=\mathrm{mg}, \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Unit of force : newton (N) , 1N = 1 kg * $\mathrm{m} / \mathrm{s}^{2}$
- Example : a woman has a mass of 60 kg , she is standing on a floor and remains at rest, find the normal force exerted on her by the floor ?
- Solution :
- Equilibrium :
- $\vec{N}+\vec{W}=0$
- $\vec{N}=\mathbf{N K}$
- $\overline{\mathrm{W}}=-\mathbf{W} \hat{K}$
- $\mathbf{N}=\mathbf{W}=\mathbf{m g}$
- $\mathrm{N}=60$ * $9.8=588 \mathrm{~N}$

- Example : an ice cream vendor exerts a force of 40 N to overcome friction and push his cart at a constant velocity, the car has a mass of 150 kg , find the forces acting on the cart ?

- Solution :

- The net forces are zero
- ${\underset{\sim}{n}}_{n} \vec{f}_{i}=\overrightarrow{\mathrm{F}}+\overrightarrow{\mathrm{N}}+\overrightarrow{\mathrm{f}}+\overrightarrow{\mathrm{W}}=\mathbf{0}$
- $\mathrm{F}=\mathrm{f}=40 \mathrm{~N}$
- $\mathrm{N}=\mathrm{W}=\mathrm{mg}=150$ * $9.8=1470 \mathrm{~N}$

- Example : a child pushes a sled across a frozen pond with a horizontal force of 20 N , assume friction is negligible .
-1) if the sled accelerates at $0.5 \mathrm{~m} / \mathrm{s}^{2}$, what is its mass ?
- 2) another child with a mass of 60 kg sits on the sled, what acceleration will the same force produce now?

- Solution :

-1) $f=m a$

- $\mathrm{m}=\mathrm{f} / \mathrm{a}=20 / 0.5=40 \mathrm{~kg}$
-2) $\mathrm{a}=\mathrm{f} /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)=20 /(40+60)=0.2 \mathrm{~m} / \mathrm{s}^{2}$
- Example : an elevator has a mass of 1000 kg , find :
- 1) it accelerates upward at $3 \mathrm{~m} / \mathrm{s}^{2}$, what is the force T exerts by the cable on the elevator?
-2) what is the force T if the acceleration is $3 \mathrm{~m} / \mathrm{s}^{2}$ downward ?
- Solution :
-1) $\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
- $\mathrm{T}=\mathrm{mg}+\mathrm{ma}=\mathrm{m}(\mathrm{g}+\mathrm{a})=1000 *(9.8+3)=12800 \mathrm{~N}$
- 2) $\mathrm{T}-\mathrm{mg}=-\mathrm{ma}$
- $\mathrm{T}=\mathrm{mg}-\mathrm{ma}=\mathrm{m}(\mathrm{g}-\mathrm{a})=1000 *(9.8-3)=6800 \mathrm{~N}$

- Example : a child pulls a train of two cars with a horizontal force of 10 N , if we neglect the mass of the string and friction :
- 1) find the normal forces exerted on each car by the floor
- 2) what is the acceleration of the train?
-3) what is the tension in the string ?

- Solution :

- 1)
- $\mathrm{N}_{1}=\mathrm{m}_{1} \mathrm{~g}=3$ * $9.8=29.4 \mathrm{~N}$
- $\mathrm{N}_{2}=\mathrm{m}_{2} \mathrm{~g}=1$ * $9.8=9.8 \mathrm{~N}$
- 2)

- $\mathrm{F}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) * a$
- $a=F /\left(m_{1}+m_{2}\right)=10 /(3+1)=10 / 4=2.5 \mathrm{~m} / \mathrm{s}^{2}$
- 3)
- $\mathrm{T}=\mathrm{m}_{2} \mathrm{a}=2.5 \mathrm{~N}$

- Example : two forces F_{1} and F_{2} acting on an object of mass 2 kg in the directions shown in the figure, find:
- 1) the acceleration of the object
- 2) the third force that causes the object to be in equilibrium

- Solution :

-1)

- $\overrightarrow{\Sigma \mathrm{f}}=\mathrm{m} \overrightarrow{\mathrm{a}}$
- $\Sigma \mathrm{f}_{\mathrm{x}}=m \mathrm{a}_{\mathrm{x}}$
- $\left(F_{1} * \cos 37\right)+\left(f_{2} * \cos 90\right)=m a_{x}$
- 10 * $0.8+0=2 \mathrm{a}_{\mathrm{x}} \ldots . . . \mathrm{a}_{\mathrm{x}}=4 \mathrm{~m} / \mathrm{s}^{2}$
- $\Sigma f_{y}=m a_{y} \ldots . . .\left(F_{1} * \sin 37\right)+\left(F_{2} * \sin 90=m a_{y}\right)=(10 * 0.6)+6=2 a_{y} \ldots . . A_{y}=6 \mathrm{~m} / \mathrm{s}^{2}$
- $A=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}}=\sqrt{16+36}=7.2 \mathrm{~m} / \mathrm{s}^{2}$
- $\theta=\tan ^{-1} a_{y} / a_{x}=\tan ^{-1} 6 / 4=56.3^{\circ}$
- 2)
- $\vec{F}_{3}=-\left(\vec{F}_{1}+\vec{F}_{2}\right)$, but $\left(\vec{F}_{1}+\vec{F}_{2}\right)=m \vec{a}=2(4 \hat{x}+6 \hat{y})=8 \hat{x}+12 \hat{y}$
- $\overrightarrow{F_{3}}=-8 \hat{x}-12 \hat{y}$
- $\left|\overrightarrow{F_{3}}\right|=\sqrt{(-8)^{2}+(-12)^{2}}=14.4 \mathrm{~N}$
- Example : a block of mass $m_{1}=20 \mathrm{~kg}$ is free to move on a horizontal surface , a rope : which passes over a pulley, attaches it to a hanging block of mass $m_{2}=10 \mathrm{~kg}$ assuming for simplicity that the pulley and rope masses are negligible and that there is no friction, find:
- 1) the forces on the blocks
-2) their acceleration
- 3) if the system is initially at rest, how far has it moved after $2 s$?
- to be continued

- Solution :

-1)

- $\mathrm{N}_{1}=\mathrm{m}_{1} \mathrm{~g}=20 * 9.8=196 \mathrm{~N}$
- $\mathrm{W}_{1}=\mathrm{N}_{1}=196 \mathrm{~N}$
-2)
- $T=m_{1} a$........ (1)

$$
T-W_{2}=-m_{2} a \ldots \ldots \text {..... (2) }
$$

- (1) - (2) :
- $\mathrm{W}_{2}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) * a$
- $a=w_{2} /\left(m_{1}+m_{2}\right)=m_{2} g /\left(m_{1}+m_{2}\right)$
- $a=10 * 9.8 /(20+10)=3.27 \mathrm{~m} / \mathrm{s}^{2}$
-3)
- $\Delta x=v_{0} t+1 / 2$ at 2
$\cdot=0+1 / 2 * 3.7 * 2^{2}=6.54 \mathrm{~m}$
- Example : a block of mass m is placed on a smooth inclined plane of angle θ and length d :
-1) determine the acceleration of the block after its released
- 2) how long does it take the block to reach the bottom ?
-3) what is the speed as it gets their ?
- To be continued


```
Solution :
```

1)

$$
\Sigma f_{x}=m a_{x}
$$

$$
\mathrm{mg}^{*} \sin \theta=\mathrm{ma}_{\mathrm{x}}
$$

$$
a_{x}=g^{*} \sin \theta
$$

$$
\Sigma f_{y}=0
$$

$$
\mathrm{N}-\left(\mathrm{mg}^{*} \cos \theta\right)=0
$$

2)

$$
\Delta x=d=v_{0 x} t+\left(1 / 2 a_{x} t^{2}\right)
$$

$$
d=0+\left(1 / 2 g * \sin \theta^{*} t^{2}\right)
$$

$$
t=\sqrt{2 d / g^{*} \sin \theta}
$$

3)

$$
\mathrm{V}^{2}=\mathrm{v}_{0}^{2}+2 \mathrm{a}_{\mathrm{x}}^{*} \Delta \mathrm{x}
$$

$$
=0+2 g^{*} \sin 0 * d
$$

$$
\mathrm{V}=\sqrt{2 \mathrm{~d}^{*} \mathrm{~g}^{*} \sin \theta}
$$

