RONE BY ; BANDAR AL - SHWABKAH

Motion in two dimensions

Introduction to vectors

- Vector : is defined as a physical quantity which has both magnitude and direction (forces, velocity , acceleration)
- Scalar : is defined as a physical quantity which has magnitude only (mass , time , energy)
- Vectors are denoted by \vec{A} or A (highlighted)
- Magnitude of vectors $|\vec{A}|$ or A
- A vector is pictured in a diagram by an arrow with a length is proportional to the magnitude and an angle for the direction

Addition of vectors (graphically)

- Note that $\vec{A}+\vec{B}=\vec{B}+\vec{A}$

Multiplication of a vector by a scalar

Negative of a vector

Components of a vector

- $A_{x}=A * \cos \theta \quad(x-$ components $)$
- $A_{y}=A * \sin \theta \quad(y-$ components $)$
- Where θ is the angle measured from the positive x - axis counter clockwise

Uni vectors (\hat{x}, \hat{y})

- The vector $\overrightarrow{\mathrm{A}}$ can be written in terms of unit vectors as :
- $\vec{A}=\left(a_{x} * \hat{x}\right)+\left(a_{y} * \hat{y}\right)$
- Where \hat{X} is a unit vector in the x - direction
- Where \hat{Y} is a unit vector in the y-direction
- The sum of two vectors may be obtained as :
- $\vec{C}=\vec{A}+\vec{B}=\left(A_{X} * \hat{X}+A_{Y} * \hat{Y}\right)+\left(B_{X} * \hat{X}+B_{Y} * \hat{Y}\right)=\left(C_{X} * \hat{X}\right)+\left(C_{Y} * \hat{Y}\right)$
- With :
- $C_{x}=A_{x}+B_{x}$
- $C_{Y}=A_{Y}+B_{Y}$
- $C=|\vec{C}|=\sqrt{C_{X}{ }^{2}+C_{Y}{ }^{2}}$
- $\theta=\tan ^{-1} c_{y} / c_{x}$

- Example :

-1) find the components of the vectors \vec{A} and \vec{B} if $|\vec{A}|=2,|\vec{B}|=3$

- 2) find the sum resultant of \vec{A} and \vec{B}

- Solution :

-1)

- $\mathrm{A}_{\mathrm{x}}=\mathrm{A} * \cos \theta_{1}=2 \cos 30=1.73$
- $\mathrm{A}_{\mathrm{y}}=\mathrm{A} * \sin \theta_{1}=2 \sin 30=1$
- $\mathrm{B}_{\mathrm{x}}=\mathrm{B}^{*} \cos \theta_{2}=3 \sin (-45)=2.12$
- $\mathrm{B}_{\mathrm{y}}=\mathrm{B}^{*} \sin \theta_{2}=3 \sin (-45)=-2.12$

- 2)
- $\vec{C}=\vec{A}+\vec{B}=\left(A_{X}+B_{X}\right) * \hat{X}+\left(A_{Y}+B_{Y}\right) * \hat{Y} \ldots=(1.73+2.12) * \hat{X}+(1-2.12) * \hat{Y}$
- $=3.85^{*} \hat{\mathrm{X}}-1.12^{*} \hat{\mathrm{Y}}$
- $\mathrm{C}=|\overrightarrow{\mathrm{C}}|=\sqrt{(3.85)^{2}+(-1.12)^{2}}=4$
- $\theta=\tan ^{-1} \mathrm{c}_{\mathrm{y}} / \mathrm{c}_{\mathrm{x}}=\tan ^{-1}-1.12 / 3.85=-16.2^{\circ}$
- Example : given $\vec{A}=2 \hat{X}+\hat{Y}, \vec{B}=4 \hat{X}+7 \hat{Y}$, Find :
- 1) the components of $\vec{C}=\vec{A}+\vec{B}$
- 2) the magnitude and direction of \vec{C}
- Solution :
- 1)
- $\overrightarrow{\mathrm{C}}=(2+4) * \hat{\mathrm{X}}+(1+7) * \hat{\mathrm{Y}}=6 \hat{\mathrm{X}}+8 \hat{\mathrm{Y}}$
- $C_{X}=6, C_{Y}=8 \ldots . .|\vec{C}|=\sqrt{36+64}=10$
- 2)
- $\theta=\tan ^{-1} \mathrm{c}_{\mathrm{y}} / \mathrm{c}_{\mathrm{x}}=\tan ^{-1} 8 / 6=53^{\circ}$

The velocity in two dimension

- The displacement $\overrightarrow{\Delta S}$ is given by : $\overrightarrow{\Delta \mathrm{S}}=(\Delta \mathrm{x} * \hat{\mathrm{x}})+(\Delta \mathrm{y} * \hat{\mathrm{y}})$
- The average velocity is :
- $\overrightarrow{\mathrm{V}}=\overrightarrow{\Delta \mathrm{S}} / \Delta \mathrm{t}=(\Delta \mathrm{x} / \Delta \mathrm{t} * \hat{\mathrm{x}})+(\Delta \mathrm{y} / \Delta \mathrm{t} * \hat{\mathrm{y}})$
- $\overrightarrow{\mathrm{V}}=\left(\overline{\mathrm{v}}_{\mathrm{x}} * \hat{\mathrm{x}}\right)+\left(\overline{\mathrm{v}}_{\mathrm{y}} * \hat{y}\right)$

- Example : a car travels halfway around an oval race track at constant speed of $30 \mathrm{~m} / \mathrm{s}$:
- 1) what are it $\mathrm{v}_{\text {ins }}$ at points 1 and 2 ?
- 2) it takes 40 s to go from 1 to 2 which are 300 m apart , what is the average velocity during this time interval ?
- Solution :
-1)
- $\nabla_{\text {ins }(1)}=30 \hat{\mathrm{~m}} / \mathrm{s}$
- $\overrightarrow{\mathrm{V}}_{\mathrm{ins}(2)}=-30 \hat{\mathrm{y}} \mathrm{m} / \mathrm{s}$
- 2)

- $\overrightarrow{\mathrm{V}}=\overrightarrow{\Delta \mathrm{S}} / \Delta \mathrm{t}=(\Delta \mathrm{x} * \hat{\mathrm{x}}+\Delta \mathrm{y} * \hat{y}) / \Delta \mathrm{t}=(300 \hat{x}+0 \hat{y}) / 40=300 \hat{x} / 40=7.5 \hat{\mathrm{x}} \mathrm{m} / \mathrm{s}$
- Example : a boat moves at $10 \mathrm{~m} / \mathrm{s}$ relative to the water toward the shore , the velocity of the water current is $5 \mathrm{~m} / \mathrm{s}$ to the right, find the velocity of the boat relative to the shore ?

- Solution :

$\cdot|\overrightarrow{\mathrm{V}}|=\sqrt{\mathrm{v}_{\mathrm{b}}{ }^{2}+\mathrm{v}_{\mathrm{w}}{ }^{2}}=\sqrt{10^{2}+5^{2}}=11.18 \mathrm{~m} / \mathrm{s}$

- $\theta=\tan ^{-1} \mathrm{v}_{\mathrm{b}} / \mathrm{v}_{\mathrm{w}}=\tan ^{-1} 10 / 5=63.4$

Acceleration in two dimension

- Average acceleration : $\overrightarrow{\vec{a}}=\overrightarrow{\Delta v} / \Delta t=\left(\vec{v}_{2}-\vec{v}_{1}\right) / \Delta t$
- where $\overrightarrow{\mathrm{V}}=\left(\mathrm{v}_{\mathrm{x}}{ }^{*} \hat{\mathrm{x}}\right)+\left(\mathrm{v}_{\mathrm{y}}{ }^{*} \hat{y}\right)$:
- $\overrightarrow{\mathrm{a}}=\left(\Delta \mathrm{v}_{\mathrm{x}} / \Delta \mathrm{t} * \hat{\mathrm{x}}\right)+\left(\Delta \mathrm{v}_{\mathrm{y}} / \Delta \mathrm{t} * \hat{\mathrm{y}}\right)=\left(\mathrm{a}_{\mathrm{x}}{ }^{*} \hat{\mathrm{x}}\right)+\left(\mathrm{a}_{\mathrm{y}}{ }^{*} \hat{\mathrm{y}}\right)$
- Instantaneous acceleration : $\vec{a}=d \vec{v} / d t$
- $\vec{a}=\left(d v_{x} / d t * \hat{x}\right)+\left(d v_{y} / d t * \hat{y}\right)=\left(a_{x} * \hat{x}\right)+\left(a_{y} * \hat{y}\right)$
- Example : the example that is in slide 15 , the velocity of the car changes from $\overrightarrow{\mathrm{v}}=30 \hat{\mathrm{y}} \mathrm{m} / \mathrm{s}$ to $-30 \hat{\mathrm{y}} \mathrm{m} / \mathrm{s}$, what was the average acceleration ?
- Solution :
- $\overrightarrow{\vec{A}}=\Delta \overrightarrow{\mathrm{v}} / \Delta \mathrm{t}=\left(\vec{v}_{2}-\vec{v}_{1}\right) / \Delta \mathrm{t}=(-30 \hat{y}-30 \hat{y}) / 40=1.5 \hat{y} \mathrm{~m} / \mathrm{s}^{2}$

Finding the motion of an object

- Motion in two dimensions can be considered as two separate motions, the first in the x-direction and the second in the y-direction.
- Using the same kinematical equation for one dimensional motion:

$$
v_{x}=v_{o_{x}}+a_{x} t \quad \Delta x=v_{o x} t+1 / 2 a_{x} t^{2}
$$

$$
v_{y}=v_{o y}+a_{y} t
$$

$$
\Delta y=v_{o y} t+1 / 2 a_{y} t^{2}
$$

projectiles

- Two conditions must be satisfied :
-1) air resistance is neglected
- 2) \vec{g} is constant and the only force acting on the object is the gravitational force
- Projectile motion can be considered as two separate motions :
-1) uniform motion in the x-direction ($a_{x}=0$)
- 2) free falling motion in the y-direction ($\left.a_{y}=-\mathrm{g}\right)$

Uniform motion	Free falling
$v_{x}=v_{0 x}$	$v_{y}=v_{0 y}-g t$
$\Delta x=v_{0 x} t$	$\Delta y=v_{0 y} t-1 / 2 g^{2}$

- Example : a diver leaps from a tower with $v_{0 x}=+7 \mathrm{~m} / \mathrm{s}$ and $v_{0 y}=+3 \mathrm{~m} / \mathrm{s}$, find :
-1) the components of her position and velocity 1 s later?
- 2) the position and velocity

- Solution :

-1)

- $\mathrm{V}_{\mathrm{x}}=\mathrm{v}_{0 \mathrm{x}}=7 \mathrm{~m} / \mathrm{s}$
- $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{oy}}-\mathrm{gt}=3-(9.8 * 1)=-6.8 \mathrm{~m} / \mathrm{s}$
- $X=v_{0 x} t=7 \mathrm{~m}$
- $Y=v_{0 y} t-1 / 2 g^{2}=3-\left(1 / 2 * 9.8 * 1^{2}\right)=-1.9 m$
-2)
- $V=\sqrt{v_{x}{ }^{2}+v_{y}{ }^{2}}=\sqrt{7^{2}+(-6.8)^{2}}=9.7$
- $\theta=\tan ^{-1} v_{v} / v_{x}=-44.1^{\circ}$
$\cdot|\vec{V}|=\sqrt{x^{2}+y^{2}}=\sqrt{7^{2}+(-1.9)^{2}}=7.25 m$
- $\theta=\tan ^{-1} \mathrm{y} / \mathrm{x}=-15^{\circ}$

- Example : a ball is thrown horizontally from a window 10 m above the ground and hits the ground 40 m away, how fast was the ball thrown ?

- Solution :

- $\mathrm{Y}=\mathrm{v}_{\mathrm{oy}} \mathrm{t}-1 / 2 \mathrm{gt} \mathrm{t}^{2}=0-1 / 2 * 9.8 * \mathrm{t}^{2} \ldots . . .-10=-1 / 2 * 9.8 * \mathrm{t}^{2} \ldots . . . \mathrm{t}=1.429 \mathrm{~s}$
- $X=v_{0 x} t \ldots v_{0 x}=x / t=40 / 1.429=28 \mathrm{~m} / \mathrm{s}$
- Note that : $v_{0 x}=v_{0}=28 \mathrm{~m} / \mathrm{s}$

- Example : a ball is kicked with $\mathrm{v}_{0}=25 \mathrm{~m} / \mathrm{s}$ at an angle of 30° to the horizontal :
-1) when does it reach its greatest height ?
- 2) where is it at that time ?
- Solution :
- 1)
- $\mathrm{V}_{0 \mathrm{x}}=\mathrm{v}_{0} \cos \theta=25 \cos 30=21.7 \mathrm{~m} / \mathrm{s}$
- $\mathrm{V}_{\mathrm{Oy}}=\mathrm{v}_{0} \sin \theta=25 \sin 30=12.5 \mathrm{~m} / \mathrm{s}$
- At the highest distance $v_{y}=0$
- $\mathrm{V}_{\mathrm{y}}=\mathrm{v}_{0 \mathrm{y}}-\mathrm{gt}0=12.5-9.8 \mathrm{t} \mathrm{t}=1.28 \mathrm{~s}$
-2)
- $\mathrm{X}=\mathrm{v}_{0 \mathrm{x}} \mathrm{t}=21.7$ * $1.28=27.8 \mathrm{~m}$
- $\mathrm{Y}=\mathrm{v}_{\mathrm{oy}} \mathrm{t}-1 / 2 \mathrm{gt}^{2}=(12.5 * 1.28)-\left(1 / 2 * 9.8 * 1.28^{2}\right)=7.97 \mathrm{~m}$
- Position : $\vec{v}=(x * \hat{x})+(y * \hat{y})=\left(27.8 * \hat{x}+7.97^{*} \hat{y}\right) m$

