## **Opioids**

- Opioid
  - Compound with morphine-like activity
- Opiate
  - Substance extracted from opium
  - Exudate of unripe seed capsule of Papaver somniferum
  - Contain 2 types of alkaloids

#### Phenanthrene derivatives

- Morphine (10% in opium)
- Codeine (0.5% in opium)
- Thebaine (0.2% in opium), (Nonanalgesic)

#### Benzoisoquinoline derivatives

Papaverine (1%)

Nonanalgeslic

Noscapine (6%)

## Opioids

- Mordern definition of opioid
  - Molecule that interact with opioid receptor
- Opioid compound
  - Opioid receptor agoninsts, antagonists, agonists-antagonists
  - Natural products, synthetic and semisynthetic compounds
  - peptides synthesized by neurone and other cell

### CLASSIFICATION OF OPIOIDS

#### Natural opium alkaloids:

- Morphine
- Codeine

#### Semisynthetic opiates:

- Diacetylmorphine (Heroin)
- Pholcodeine

#### **Synthetic opioids:**

- Pethidine (Meperidine)
- Fentanyl, Alfentanil, Sufentanil, Remifentanil
- Methadone
- Dextropropoxyphene
- Tramadol

# COMPLEX ACTION OPIOIDS AND OPIOID ANTAGONISTS

### **Agonist-antagonists** ( κ analgesics)

- Nalorphine
- Pentazocine
- Butorphanol

### Partial/weak $\mu$ agonist + $\kappa$ antagonist

Buprenorphine

#### **Pure antagonists**

- Naloxone
- Naltrexone
- Nalmefene

## Pain Pathophysiology

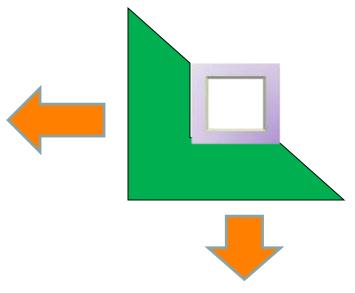
- Pain is an ill-defined, unpleasant sensation, evoked by an external or internal noxious stimulus.
- Analgesic relieves pain without significantly altering consciousness.
- Pain perception has 2 components
  - Nociceptive component
  - Affective component

- Most of available opioid analgesics
  - Act at μ-opioid receptor
- Activation of  $\mu$ -opioid receptor
  - → analgesia, euphoria, respiratory depress, nausea, vomiting, decreased gastrointestinal motility, tolerance, dependence
- $\delta$ -,  $\kappa$ -opioid receptor
  - analgesia
  - dysphoria, Psychotomimetic (κ)
  - Affective behaviour, proconvulsant ( $\delta$ )
  - Not cause respiratory depression or to decease GI motility
    - $\rightarrow$  Analgesia without  $\mu$ -opioid side effect

μ antagonist- β-funaltrexamine

• k antagonist-Norbinaltorphimine

•  $\delta$  antagonist- Naltrindole


- Morphine
  - $\mu$ ,  $\delta$ ,  $\kappa$  receptor activation
- Fentanyl, sufentanyl
  - More selective  $\mu$ -receptor agonist
  - High effective analgesia

## **Endogenous Opioid Peptides**

 A number of endogenous opioid peptides having morphine like activity are found in brain, pituitary, spinal cord, GIT

- β-Endorphins μ
- Enkephalins  $\mu \& \delta$
- Dynorphins- κ
- Endomorphins- μ
- Nociceptin- NOP receptor (nociceptin opioid peptide receptor)

## Pharmacodynamics: CNS



### **Undesirable:**

- Euphoria
- ◆Respiration
- Sedation
- Endocrine effects

## **Pharmacokinetics**

Absorption: GI tract

Distribution: protein binding

Biotransformation: liver

Excretion: kidney and GI (bile)

Differs by age, gender

## **Effects of Morphine**

## **Central Nervous System Effects**

#### **Analgesia**

- Pain consists of both sensory and affective (emotional) components.
- Opioid analgesics reduce both aspects of the pain experience, especially the affective aspect.
- In contrast, nonsteroidal anti-inflammatory analgesic drugs have no significant effect on the emotional aspects of pain.

#### **Euphoria**

- intravenous drug users experience a pleasant floating sensation with lessened anxiety and distress (DA release in nucleus accumbance).
- However, dysphoria, an unpleasant state characterized by restlessness and malaise, may sometimes occur.

### **Sedation**

- Drowsiness
- clouding of mentation
- little or no amnesia
- No motor incoordination
- Sleep is induced in the elderly (can be easily aroused from this sleep)

### **Respiratory Depression**

- by inhibiting brainstem respiratory mechanisms.
- Alveolar PCO<sub>2</sub> may increase, but the most reliable indicator of this depression is a depressed response to a carbon dioxide challenge.
- In individuals with increased intracranial pressure, asthma, chronic obstructive pulmonary disease, or cor pulmonale, this decrease in respiratory function may not be tolerated.

### **Cough Suppression**

- Codeine in particular
- However, cough suppression by opioids may allow accumulation of secretions and thus lead to airway obstruction and atelectasis.

### Temperature regulating centre depression

chances of hypothermia

### Vasomotor centre depression

Fall in BP

### Morphine stimulates:

CTZ (nausea, vomiting)

 Edinger Westphal nucleus of III nerve is stimulated (miosis)

Vagal centre (bradycardia)

#### **Miosis**

- Constriction of the pupils
- By stimulating Edinger Westphal nucleus of III nerve
- Miosis is a pharmacologic action to which little or no tolerance develops
- valuable in the diagnosis of opioid overdose.

### **Truncal Rigidity-**

- Truncal rigidity reduces thoracic compliance and thus interferes with ventilation.
- Truncal rigidity may be overcome by administration of an opioid antagonist, which of course will also antagonize the analgesic action of the opioid.
- Preventing truncal rigidity while preserving analgesia requires the concomitant use of neuromuscular blocking agents.

## Peripheral Effects

### **Cardiovascular System**

- Bradycardia
  Meperidine is an exception (can result in tachycardia)
- Hypotension due to
  - -peripheral arterial and venous dilation
  - -depression of vasomotor centre
  - -release of histamine.
- Increased PCO<sub>2</sub> leads to cerebral vasodilation associated with a decrease in cerebral vascular resistance, an increase in cerebral blood flow, and an increase in intracranial pressure.

#### **Gastrointestinal Tract**

#### Constipation

- no tolerance
- Opioid receptors exist in high density in the gastrointestinal tract
- constipating effects of the opioids are mediated through an action on the enteric nervous system as well as the CNS
- gastric secretion of hydrochloric acid is decreased
- propulsive peristaltic waves are diminished
- tone is increased
- this delays passage of the fecal mass and allows increased absorption of water, which leads to constipation
- so used in the management of diarrhea

#### **Biliary Tract**

- sphincter of Oddi may constrict
- contract biliary smooth muscle
- result in biliary colic

#### Renal

- Renal function is depressed by opioids
- decreased renal plasma flow
- enhanced renal tubular sodium reabsorption
- Ureteral and bladder tone are increased
- Increased sphincter tone may precipitate urinary retention
- ureteral colic caused by a renal calculus is made worse by opioid-induced increase in ureteral tone

#### **Uterus-**

- may prolong labor
- both peripheral and central actions of the opioids can reduce uterine tone

#### Neuroendocrine-

- stimulate the release of ADH, prolactin, and somatotropin
- inhibit the release of luteinizing hormone

#### **Pruritus-**

- CNS effects and peripheral histamine release may be responsible for these reactions
- pruritus and occasionally urticaria (when administered parenterally)

### Miscellaneous

The opioids modulate the immune system by

- lymphocyte proliferation
- antibody production
- chemotaxis

## Clinical Use of Opioid Analgesics

- Analgesia
- Cough
- Diarrhea
- Acute Pulmonary Edema
- Balanced anaesthesia
- Preanaesthetic medication
- Relief of anxiety and apprehension

## **Toxicity & Undesired Effects**

| Behavioral restlessness, tremulousness, hyperactivity (in dysphoric reactions)           |
|------------------------------------------------------------------------------------------|
| Respiratory depression                                                                   |
| Nausea and vomiting                                                                      |
| Increased intracranial pressure                                                          |
| Postural hypotension accentuated by hypovolemia                                          |
| Constipation                                                                             |
| Urinary retention                                                                        |
| Itching around nose, urticaria (more frequent with parenteral and spinal administration) |

## Acute morphine poisoning

- >50 mg of morphine
- Lethal dose is 250mg
- Stupor, coma, shallow breathing, cyanosis, pinpoint pupil, fall in BP, convulsions
- Death due to respiratory failure

#### Treatment

- Positive pressure respiration
- Iv fluids
- Gastric lavage with potassium permagnate
- Naloxone

## **Tolerance and Dependence**

- With frequently repeated therapeutic doses of morphine, there is a gradual loss in effectiveness
- To reproduce the original response, a larger dose must be administered
- Along with tolerance, physical dependence develops
- Physical dependence is defined as a characteristic withdrawal or abstinence syndrome when a drug is stopped or an antagonist is administered

## **Tolerance and Dependence**

- Maintenance of normal sensitivity of receptors requires reactivation by endocytosis and recycling.
- activation of receptors by endogenous ligands results in endocytosis followed by resensitization and recycling of the receptor to the plasma membrane.
- But morphine fails to induce endocytosis of the -opioid receptor - tolerance and dependence.
- In contrast, methadone, used for the *treatment* of opioid tolerance and dependence, does induce receptor endocytosis.

## **Tolerance and Dependence**

 NMDA receptor ion channel complex play a critical role in tolerance development and maintenance

 NMDA-receptor antagonists such as ketamine can block tolerance development

## Withdrawal

Withdrawal is manifested by significant somatomotor and autonomic outflow-

- agitation
- hyperalgesia
- hyperthermia
- hypertension
- diarrhea
- pupillary dilation

- release of all pituitary and adrenomedullary hormones
- affective symptoms
  - -dysphoria
  - -anxiety
  - -depression

These phenomena are highly aversive and motivate the drug recipient to make robust efforts to avoid the withdrawal state

## Contraindications and Cautions in Therapy

#### **Use of Pure Agonists with Weak Partial Agonists**

 morphine with pentazocine - risk of diminishing analgesia or even inducing a state of withdrawal

#### **Use in Patients with Head Injuries**

- Carbon dioxide retention caused by respiratory depression results in cerebral vasodilation.
- In patients with elevated intracranial pressure, this may lead to lethal alterations in brain function.
- Marked respi. depression
- Vomiting, miosis, altered mentation by morphine interferes with assessment of pt condition

#### **Use during Pregnancy**

- In pregnant women who are chronically using opioids, the fetus may become physically dependent in utero and manifest withdrawal symptoms in the early postpartum period.
- A daily dose as small as 6 mg of heroin (or equivalent) taken by the mother can result in a mild withdrawal syndrome in the infant, and twice that much may result in severe signs and symptoms, including irritability, shrill crying, diarrhea, or even seizures.
- When withdrawal symptoms are mild diazepam
- with more severe withdrawal methadone

#### **Use in Patients with Impaired Pulmonary Function**

opioid analgesics may lead to acute respiratory failure.

#### Use in Patients with Impaired Hepatic or Renal Function

- morphine and its congeners are metabolized primarily in the liver
- Half-life is prolonged in patients with impaired renal function

#### **Use in Patients with Endocrine Disease**

- -adrenal insufficiency (Addison's disease) and hypothyroidism (myxedema) –
- -prolonged and exaggerated responses to opioids.

## Related drugs

### **Pethidine**

- 1/10<sup>th</sup> in analgesic potency
- Spasmodic action on smooth muscles is less
- Tachycardia (antimuscarinic action)- it is related to atropine, even acts on opioid receptors
- Safer in asthmatics (less histamine release)
- Uses- analgesia, preanaesthetic medication
- Preferred opioid analgesic during labour (less neonatal respi depression)

## Fentanyl

- 80-100 times more potent than morphine
- few cardiovascular effects
- little propensity to release histamine.
- Because of high lipid solubility, it enters brain rapidly and produces peak analgesia in 5 min after i. v. injection.
- The duration of action is short: starts wearing off after 30-40 min due to redistribution
- Transdermal fentanyl has become available for use in cancer

#### Methadone

- Slow & persistant action
- Sedative & subjective effects are less intense
- No kick
- Less abuse potential
- Use- as substitute therapy for opioid dependence
- 1mg methadone for 4 mg morphine.

#### **Tramadol**

- Analgesic action mechanism
  - Weak affinity for μ-opioid receptor
  - norepinephrine & 5-HT reuptake Inhibition
- Advantage
  - Less respiratory depression, nausea, vomiting, constipation
  - Less abuse potential
  - Rapid psychomotor recovery
- Labour pain, injury, surgery (other short lasting pain)
- Moderate pain treatment : as effective as morphine
- Severe pain treatment : less effective than morphine

### **Pentazocine** (κ analgesic)

- It has agonistic actions and weak opioid antagonist
- elicit dysphoric and psychotomimetic effects
- increase in blood pressure and heart rate

#### Uses-

- moderate to severe pain
- as a preoperative medication and
- as a supplement to anesthesia

## **Buprenorphine** (weak $\mu$ agonist & $\kappa$ antagonist)

- 25-50 times more potent than morphine
- Sublingual route
- Slower onset & longer duration of action
- Postural hypotension is marked
- Cannot be used during labour (respi dep not reversed by naloxone)

#### Uses-

- Long lasting pain- cancer
- Tt of morphine dependence

### **Naloxone** ( $\mu$ , $\kappa$ , $\delta$ antagonist)

- Antagonizes all morphine actions
- Sedation is less completely reversed
- Blocks placebo, acupuncture, stress induced analgesia

#### Use

- Morphine poisoning
- Diagnostic test for opioid addiction
- Revert neonatal respi depression due to opioid use during labour

## Peripherally Acting Opioid

- Opioid receptor outside central nerve system
  - Peripherally acting opioid agonist
    - → analgesia without CNS side effect
- Loperamide, Diphenoxylate
  - $-\mu$ -opioid receptor agonist
  - Not cross blood-brain barrier
  - Treatment : inflammation-induced hyperalgesia
  - Relieve diarrhea
- Alvimopan
  - peri μ-opioid receptor antagonist
  - Relieves constipation in opium addicts
  - Without precipitating opioid withdrawl
  - Treat postoperative paralytic ileus

## Opioid with Other Analgesics

- Goal of using analgesics in combination
  - Achieve superior analgesia
  - Reduce dose of each drug
  - Minimizing side effect
- NSAID
  - Synergistical action with systemic opioid to produce analgesia
- Local anesthetics and opioid
  - Synergistical pain relief when intrathecal or epidural administration