The active Ingredient in any antacid-tablet may

1) $\mathrm{Co}_{3}{ }^{2-}$
2) OH^{-}
3) HCO^{-}
4) All of above

Which of the following is NOT laboratory safety rule?
(a) You should never mix acids with bases
(b) you should never add water to acid
(c) you should tie back your long hair
(d) All ot the above are valid safety rules

Which of the following is a chemical property of water?
(a) its density is $1.000 \mathrm{~g} / \mathrm{cm} 3$ at $4{ }^{\circ} \mathrm{C}$
(b) it causes light rays to bend
(c) it forms bubbles when calcium is added
(d) its melting point is zero C

What piece of laboratory equipment is best-suited for accurately measuring the volume of a liquid?
(a) Crucible
(b) test tube
(d) Beaker
(c) Erlenmeyer fask
(d) Graduated cylinder

What is the purpose of using wire gauze equipment in the laboratory?
A) To measure volume of solution
B) To run a chemical reaction
C) To distribute the heat over the surface of container لتوزيع درجة الحرارة بانتظام
D) To collect a precipitate
E) To separate a precipitate from a solution

When two aqueous solutions of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and HCl are mixed together, the observation of occurrence of a reaction is:
A) evolution of a gas without odor
B) evolution of a gas with odor
C) formation of a white precipitate
D) Nothing changed.

Which of the following events is not a common sign that a chemical change has taken place?
A) production of heat or light
B) bubbling
C) Formation of a precipitate.
D) change in the state (phase) of matter
E) Change in color or odor.

What instruments do we use to measure accurate density of a liquid?
A) Top loading balance and thermometer
B) Top loading balance and stopwatch
C) Graduated cylinder, top loading balance and thermometer
D) Graduated cylinder and thermometer
E) Pipet, top loading balance and thermometer

The density of a diamond is $3.51 \mathrm{~g} / \mathrm{cm} 3$, and the density of platinum is $21.43 \mathrm{~g} / \mathrm{cm} 3$. If equal masses of diamond and platinum are transferred to equal volumes of water in separated graduated cylinders, which graduated cylinder would have the greatest volume change?
A) The platinum because it has the lower density.
B) The diamond because it has the lower density.
C) All of the above answers are correct
D) All of the above answers are incorrect
since the density of diamond ($3.51 \mathrm{~g} / \mathrm{cm}^{3}$) is lower than the density of platinum $\left(21.43 \mathrm{~g} / \mathrm{cm}^{3}\right)$, the graduated cylinder containing diamond will have the greatest volume change.

An example of a chemical property is chemical property
A) Solubility
B) Mass
C) Density
D) Boiling
E) None of these

What is the purpose of using wire gauze equipment in the laboratory?
A) to separate a precipitate from a solution
B) to run a chemical reaction
C) to measure volume of solution
D) to distribute the heat over the surface of the container
E) to collect a precipitate

Which of the following observations is correct when methane burns in Bunsen burner with sufficient oxygen?
A) Hot, luminous blue flame and $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
B) Hot, nonluminous blue fame and $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
C) Luminous low flame and $\mathrm{C}(\mathrm{s})+\mathrm{CO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$
D) Hot luminous yellow flame and CO_{2}

When sodium hydroxide solution was added to a solution of one of the following chemicals, a gas with pungent odor was evolved. This gas turned a moisture litmus paper blue. The chemical was
المطلوب شو هي الماده يلي بتتفاعل مع ال
$\mathrm{NaOH}+\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}$ (gas with odor)
و بيتصاعد غاز نو رائحة
A) BaCl_{2}
B) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C) $\mathrm{NH}_{4} \mathrm{Cl}$
D) NaCl
E) ZnSO_{4}

In an experiment on limiting reactant, a student dissolved a 1.30 g sample of a mixture of BaCl_{2} $2 \mathrm{H}_{2} \mathrm{O}$ (molar mass $=244 \mathrm{~g} / \mathrm{mol}$) and $\mathrm{Na}_{3} \mathrm{PO}_{4} .12 \mathrm{H}_{2} \mathrm{O}$ (molar mass $=380 \mathrm{~g} / \mathrm{mol}$) in 200 mL water, and the mass of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (molar mass $\left.=601 \mathrm{~g} / \mathrm{mol}\right)$ collected was $=0.50 \mathrm{~g}$ Knowing that addition of two drops of BaCl_{2} solution to the filtrate lead to precipitate formation, calculate the mass percent of $\mathrm{BaCl}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ in the original sample:
$3 \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl}+14 \mathrm{H}_{2} \mathrm{O}$
A) 19%
B) 41%
C) 50%
D) 53%
E) 61%

A balance has a precision of $\pm 0.01 \mathrm{~g}$. A sample weighs about 3 g on this balance. How many significant figures should be reported for this measurement?
A) $3000 \mathrm{~g} / 4$ significant figures
B) $3 \mathrm{~g} / 1$ significant figures
C) $3.0 \mathrm{~g} / 2$ significant figures
D) $\mathbf{3 0 0} \mathbf{g} / \mathbf{3}$ significant figures

If the percentage yields of a chemical reaction is equal to 100%, then
A) The actual yield is less than the theoretical yield
B) The actual yield is equal to the theoretical yield
C) The actual yield is greater than the theoretical yield
D) There was no limiting reactant

Which of the following statements false?
A) To prevent eye injury in a laboratory, always wear safety glasses.
B) Do not blow out the solution remaining in the pipette tip after delivery.
C) Never touch, taste, or smell a chemical unless told to do so
D) Excess chemicals could be returned to the reagent bottle.
E) Lab coat must be worn all the times in the laboratory.

A student obtained the following set of data on density measurements of a solid: Mass of empty beaker $=84.35 \mathrm{~g}$

Mass of beaker + metal pieces $=98.25 \mathrm{~g}$
Initial water level in the graduated cylinder $=55.0 \mathrm{~mL}$
Final water level in the graduated cylinder with the metal pieces $=57.3 \mathrm{~mL}$. The density $(\mathrm{g} / \mathrm{cm} 3)$ of the solid with proper significant figures is:
A) 6.043
B) 6.04
C) 6.0
D) 6.0435

Solution : 98.25-84.35 = 13.9
$57.3-55.0=2.3$
$13.9 \div 2.3=6.043 \mathrm{~g} / \mathrm{cm}^{3}$

Wash bottles should be filled 'only' with
A) Tap water.
B) Distilled alcohol
C) Washing or cleansing solution
D) Distilled or deionized water
E) None of these answers

When does a reaction stop?
A) When all the excess reactant is consumed
B) When all the limiting reactant is consumed
C) When all the excess reactant is consumed
D) When it wants to

Consider the following properties which can be used to identify an unknown compound: 1) boiling point 2) solubility 3) density 4) formation of a precipitate

All these properties are
A) chemical except (1) and (4)
B) chemical except (4)
C) physical except (4)
D) physical except (1)
E) physical except (2) and (3)

Which of the following is NOT laboratory safety rule?
A) You should never mix acids with bases
B) you should never add water to acid
C) you should tie back your long hair
D) All ot the above are valid safety rules

Which of the following is a chemical property of water?
A) its density is $1.000 \mathrm{~g} / \mathrm{cm}^{3}$ at $4^{\circ} \mathrm{C}$
B) it causes light rays to bend
C) it forms bubbles when calcium is added
D) its melting point is zero C حالات المادة خاصية فيزيائية

What piece of laboratory equipment is best-suited for accurately measuring the volume of a liquid?
A) Crucible
B) test tube
C) Beaker
D) Erlenmeyer fask
E) Graduated cylinder

Which one of the following is the correct way to heat a liquid ? (C)

The observations obtained from a mixture of sodium hydroxide and hydrochloric acid is:
A) Color change
B) ppt. formed
C) No reaction
D) Increasing in temperature
E) Gas evolved

A cube of metal is 1.56 centimeters on an edge. Its mass is 16.3 grams. What is its density?
A) $4.68 \mathrm{~g} / \mathrm{cm}^{3}$
B) $4.30 \mathrm{~g} / \mathrm{cm}^{3}$
C) $5.69 \mathrm{~g} / \mathrm{cm}^{3}$
D) $6.14 \mathrm{~g} / \mathrm{cm}^{3}$
E) $4.86 \mathrm{~g} / \mathrm{cm}^{3}$
15.0 ml . of alcohol are pipette into a beaker of mass of 17.832 g . The combined mass of alcohol and the beaker was 29.674 g . What is the density of alcohol?
A) $1.188 \mathrm{~g} / \mathrm{ml}$.
D) $0.837 \mathrm{~g} / \mathrm{ml}$.
C) $0.789 \mathrm{~g} / \mathrm{ml}$.
E) $0.474 \mathrm{~g} / \mathrm{ml}$
C) $0.991 \mathrm{~g} / \mathrm{ml}$.

1. The correct names of equipments number 2 and 3 respectively () are;
A) Pipet and Beaker.
B) Erlenmeyer Flask and Beaker.
C) Beaker and Funnel.
D) Graduated Cylinder and Beaker.
2. Which of the above equipments is used to separate a precipitate from a solution?
A) 2
B) 7
C) 5
D) 1
3. What is the name of equipment number 6 ?
A) Buret
B) Pipet
C) Volumetric flask 4
D) Thermometer
4. Which of the above equipments is the best use to measured volume of solution?

It's 6

A 50 mL of 0.145 M HCl is added to an antacid sample. The Solutions is heated for about 1 min . Then the indicator was added to the solution and titrated to the end point using, 24.9 ml . of (0.12 M NaOH). Answur these questions :
A. What is the purpose of heating: to remove dissolved CO_{2}
B. The type of titration is called Back titration
C. The name of indicator is bromophenol blue colored in base blue

FORMULA MASS OF A VOLATILE LIQUIDS تجرية
Q1: 0.246 g of a condensed vapor of an unkaown volatile liquid was collected in a 150 ml fask at $60^{\circ} \mathrm{C}$ and a pressure of 740 torr. Assaming ideal behavior,R: $0.082 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{K}$, Calculate:

1. The number of moles of the volatile liquids الحل عالقوانين مباشرة
PV = n RT
2. The molar mass of volatile liquid

$$
\text { FM }=\text { mass vapor } \div \text { moles of vapor }
$$

Q2: For the molecular weight of the volatile liquid experiment a student obtained the following data

Mass of flask and foil cap and unknown $=83.35 \mathrm{~g}$
Mass of flask and foil cap $=82.65 \mathrm{~g}$
Water path temperature $=95 \mathrm{C}^{\circ}$.
Barometric pressure, at atm $=1.01$ atm.
Volume of the flask, $\mathrm{ml}=270 \mathrm{ml}$
Calculate the molar mass of the volatile liquid.

> نفس الطزء العةلة الحل منج المانيوال

FORMULA MASS OF A VOLATILE LIQUIDS

بعض المعادلات وطريقة الحل (antacid) (5)تجربة رقم Most common antacid ingredient

Compound	Chemical formula	Chemical Reaction
Aluminumhydroxide	$\mathrm{Al}(\mathrm{OH})_{3}$	$\begin{gathered} \mathrm{Al}(\mathrm{OH})_{3(x)}+3 \mathrm{HCl}_{(x)} \rightarrow \\ \mathrm{AlCl}_{3(x)}+3\left(\mathrm{H}_{2} \mathrm{O}\right)_{m} \end{gathered}$
Calcium carbonate	CaCO_{3}	$\begin{gathered} \mathrm{CaCO}_{3}(a)+2 \mathrm{HCl}_{(a)} \rightarrow \\ \mathrm{CaCl}_{2(a)}+\mathrm{H}_{2} \mathrm{O}_{\infty}+\mathrm{CO}_{2(a)} \end{gathered}$
Magnesimm carbonate	MgCO	$\begin{gathered} \mathrm{MgCO}_{(a)}+2 \mathrm{HCl}_{(a)} \rightarrow \\ \mathrm{MgCl}_{2(a)}+\mathrm{H}_{2} \mathrm{O}_{(a)}+\mathrm{CO}_{2(x)} \end{gathered}$
Magnesium hydroxide	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\begin{gathered} \mathrm{Mg}(\mathrm{OH})_{2(a)}+2 \mathrm{HCl}_{(a)} \rightarrow \\ \mathrm{MgCl}_{2(a)}+2 \mathrm{H}_{2} \mathrm{O}_{(a)} \\ \hline \end{gathered}$
Sodium bicarbonate	NaHCO_{3}	$\begin{aligned} & \mathrm{NaHCO}_{(\infty)}+\mathrm{HCl}_{(m a)} \rightarrow \\ & \mathrm{NaCl}_{(a)}+\mathrm{H}_{2} \mathrm{O}_{\infty}+\mathrm{CO}_{2(0)} \end{aligned}$

(اسئلة الحل نفس طريقة ال (report sheet)

A student titrated a 25.00 mL sample of vinegar containing acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, with a 0.9980 M NaOH solution. It required 22.78 mL of the base to reach the equivalence point. Based on this information determine the following.

- What is the morality of the OH^{-}? How many moles of OH^{-}are used to reach the equivalence point?
- How many moles of $\mathrm{H}+$ are present at the equivalence point?
- What is the morality of the $\mathrm{H}^{+}\left(\mathrm{M}_{\mathrm{H}}\right)$?
- What is the morality of the acetic acid ($\mathrm{M}_{\text {acid }}$)? What is the \% by mass of acetic acid in vinegar?

An antacid tablet was dissolved in water and 10 mL of 0.20 M HCl was added from buret and color of antacid solution changed to yellow. After the acid had reacted with the tablet it required 20 mL of 0.05 M NaOH to neutralize the excess HCl . How many moles of HCl did the antacid neutralize?

An antacid tablet containing magnesium hydroxide instead of calcium carbonate was dissolved in 100.0 mL of 0.2893 M HCl .10 .00 mL of this solution was titrated to endpoint with 25.20 mL of 0.1007 M NaOH . How much magnesium hydroxide was in the antacid tablet (in mg)? Assume 100% of the tablet was dissolved in the acid.

An aqueous solution of 3.84 g mixture of solid salt $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ and AgNO_{3} produces 1.148 g of AgCl is a precipitate. It is experimentally found that the supernatant solution contains Ag ions. (MM of $\mathrm{AgNO}_{3}=169.9 / \mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}=2442 / \mathrm{AgCl}=1434$ and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=261.3 \mathrm{~g} / \mathrm{mol}$).
$\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}(\mathrm{s})+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$

Answer the following three questions:

1) What is the limiting reactant? AgNO_{3}
2) What is the mass of the limiting reactant? 3.84 g
3) What is the percent composition of AgNO_{3}, in the salt mixture? 100%

An aqueous solution of a 0.960 g mixture of solid salt $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{BaCl}_{2} . \mathrm{H}_{2} \mathrm{O}$ produces 1.203 x 10^{-3} moles of BaSO_{4} as a precipitate. It is experimentally found that the supernatant solution contains $\mathrm{SO}_{4}{ }^{2-}$ ions. (MM of $\mathrm{Na}_{2} \mathrm{SO}_{4}=142.0 ; \mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}=244.3 \mathrm{~g} / \mathrm{mol}$). Accordingly, answer questions:

1) What is the limiting reactant?
2) The number of moles and the mass of the limiting reactant are:

Do your calculations and if you don't know how, tell me

The following elements are arranged according to decreasing their reactivity from left to right, ($\mathrm{Mg}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{H}$, and Cu), complete the following equations: تجربة رقم (4) (acid and base)
a)Cu(s) $+\mathrm{HCl}(\mathrm{aq}) \rightarrow$ no reaction

Copper (Cu) is less reactive than hydrogen (H), so it cannot displace hydrogen from hydrochloric acid (HCl).
b) $\mathrm{Fe}(\mathrm{s})+\mathrm{MgSO}_{4}(\mathrm{aq}) \rightarrow$ no reaction

Iron (Fe) is less reactive than magnesium (Mg), so it cannot displace magnesium from magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$.
c) $\mathrm{Mg}(\mathrm{s})+\mathrm{ZnSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s})$
d) $\mathrm{Zn}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

True and false

Most laboratory balances in the general chemistry laboratory can measure the mass of a substance to less than 0.01 g . True

Use a spatula to transfer chemicals from a reagent bottle. False

The hottest part of the flame is the top of the inner cone. True
To avoid waste in the use of chemicals, always return the unused portions directly to the bottle False

If your skin is burned by a flame, immediately treat the affected area by covering it with a medical cream. True
pipette should be rinsed several times with the liquid or solution before it is final filled. True Analytical balance is more sensitive than top loading balance True Erlenmeyer flask is not suitable glassware to measure exact volume. True Cool flame is an adjusted Bunsen burner having a full supply fuel and limited air. False Addition of sodium hydroxide solution to an ammonium chloride solution gave ammonia gas. True

The boiling point of flammable liquids can be measured by using Bunsen burner as source of heat. True

Adjusted Bunsen burner has two cones, in which the top of the inner corn is the hottest part. False

The best way to smell a chemical compounds is by point the test tube away from face while gently fanning vapors toward nose. True

Don't blow out the solution remaining in the pipette tip after solution has drain from the pipette. True

Working alone in the laboratory is not permitted in any circumstances. True

Cemplete with the currect wordish, phrase, or value(1).
Ack your in moctox giffenaly be quevices you yog to coyplec

 onscr with deionizedoriser.

3. Techoigee 5. Most (material sa fog dorn fank calied Vol wem etic Buaks.
6. Technigae 6) The mass of a sample mengied on a Galaice without regard it its cooxion is alled in -́sibl' 1 ared mas
7. Techaique 6. Afer conpleting a mas meavirenent, blo masyctitigogre to be set to Zero pasition
 75 miturst rube.
9. Technique \& To coltoct 2 wateronbble gos L ess dease than 2 zif 3 the mouth of the pas-collectiog Baik should be pointed downward.
Technigge 9. Do not use a spatula

13. Technique IIf. A centrifuge should be balaoced with \qquad numbers of ten tabes cetrining
\qquad volumes of solation.
14. Technigue 12] If, noxious of namseating gas is evolved froin a reacjoon mixiure, it is good advice to perform the reaclion \qquad hoods or improvised haods
5. Technigue 13 a . A nonluminous) fame with a reduced supply of fucl is callod a \qquad Sach 2 flocac is most critical whea heating liggtids and solutions contained in a fest tube
16. Technigue 13c. A nonflammable liquid ia a flatk or beaker that is greater than one-fourh full, can be healed using the laboratory selup shown is Figure

18. Techaifue 153.)b. Solids are comnonly hated to dryness in adrying oven and then cookd (ideally) ina disi Cafor
19. Trechniges 16a. The volume of a liquid should be read at the bothom of the meniveos \rightarrow ave 20. Fechnigue 16 h f The volume of a liquid in a pipet sould be contuolled with the \qquad
kefors bxing allsd.
\qquad

Four test tubes, numbered as 1,2,3 and 4. Each contains one of the aqueous solutions $\mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{BaCl}_{2}$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}$). The observations appeared in the table below are noticed.
Accordingly, answer questions below?

1) Test tube number (1) contains:
A) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
B) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C) BaCl_{2}
D) $\mathrm{H}_{2} \mathrm{SO}_{4}$
2) Test tube number (4) contains:
A) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C) BaCl_{2}
D) $\mathrm{H}_{2} \mathrm{SO}_{4}$
3) Test tube number (3) contains:
A) BaCl_{2}
B) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C) $\mathrm{H}_{2} \mathrm{SO}_{4}$
D) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
4) Which one of the following reactions generates CO_{2} gas?

A) $\mathrm{H}_{2} \mathrm{SO}_{4}$ and NaHCO_{3}

B) HCl and $\mathrm{NH}_{4} \mathrm{Cl}$
C) NaCl and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}
E) $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$

When methane gas is burned on a Bunsen burner with sufficient amount of oxygen, the result will be:
A) Hot nonluminus yellow flame and CO_{2} gas.
B) Hot luminous blue flame and CO_{2} gas $+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C) Hot nonluminus blue flame and CO_{2} gas $+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D) Luminous yellow flame and CO_{2} and CO gases $+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
E) Nothing happens

For the "Limiting reactant" experiment.
A $(1.12 \mathrm{~g})$ mixture containing $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ was dissolved in water, and then heated to near boiling for 15.0 minutes. After cooling the mixture was filtrated off and 0.113 g of BaSO_{4} obtained as precipitate. The obtained filtrate was divided into two parts, the first part drops of $0.050 \mathrm{M} \mathrm{BaCl}_{2}$ were added and nothing was obtained where the second part, drops of 0.50 M $\mathrm{Na}_{2} \mathrm{SO}_{4}$ were added and a cloudy solution was obtained. Given the molar masses (MM) for reactants and products are summarized in the table

Compound	Molar mass $(\mathrm{g} / \mathrm{mol})$
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	142.043
$\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	244.263
BaSO_{4}	233.391

1) In this experiment, which lab equipment was used to perform the digestion step?
(a) Evaporating dish
(b) Direct Bunsen burner
(c) Crucible
(d) Beaker, glass rod, watch glass
2) The limiting reactant was:
(a) BaSO_{4}
(b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(c) BaCl_{2}
(d) $\mathrm{H}_{2} \mathrm{O}$
(e) NaCl
3) The percentage of BaCl_{2} in the original salt mixture is
(a) 6.10%
(d) 35.00%
(b) 12.20%
(c) 65.00%
(d) 93.90%
(e) 35.00%

A properly adjusted Bunsen burner flame has \qquad distinct cone(s)
(a) One
(b) Two
(c) Three
(d) Four
(e) Zero

The mass of a beaker was 5.944 g . After 5.00 mL of an alcohol was pipetted into the beaker, the combined mass was 9.891 g . Determine the density of the alcohol?
(a) 0.789 g
(b) $1.188 \mathrm{~g} / \mathrm{ml}$
(c) 1.188 g
(d) $0.789 \mathrm{~g} / \mathrm{ml}$
(e) can't be calculated

Which of the following is considered an evidence for a chemical reaction?
(a) gas
(b) Water of hydration
(c) Digestion
(d) Excess reactant
(e) None of these

Which of the following reactions would give a precipitate?
(a) $\mathrm{HCl}+\mathrm{K}_{2} \mathrm{CO}_{3}$
(b) $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$
(c) $\mathrm{HNO}_{3}+\mathrm{NaOH}$
(d) $\mathrm{AgNO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
(e) b and d are correct

One of the following reactions generates CO_{2} gas:
(a) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{SO}_{4}$
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
(c) $\mathrm{NaCl}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3}$
(e) b and c are correct

Updates 12/15/2023

 وطلب وصف الهم
a-) A is yellow flame, B is the hottest part

$b-$) A is a blue flame, B is the hottest part

Figure 1.3 Flame of a properly adjusted Bunsen burner.

Which of the following has the highest value of pH ?
a) NaOH
b) HCl
c) $\mathrm{Ca}(\mathrm{OH})_{2}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$

If the pressure were $\mathrm{p}=0.134 \mathrm{~atm}$ and $\mathrm{V}=0.97 \mathrm{~L}$ and with 27 C and the mass $=0.411 \mathrm{~g}$ what is the MM ?

$$
\begin{gathered}
\mathrm{P}=0.134 \mathrm{~atm} / \mathrm{v}=0.97 \mathrm{~L} / \mathrm{T}=300.15 \mathrm{~K} / \mathrm{R}=0.082 \mathrm{I} . \mathrm{atm} / \mathrm{k} . \mathrm{mol} \\
\mathrm{PV}=\mathrm{nRT} \\
\mathrm{n}=0.00528
\end{gathered}
$$

Aspirin is prepared by the reaction between acetic anhydride and salicylic acid, a 6.9 salicylic acid ($\mathrm{MM}=138.1$) with 4.08 anhydride ($\mathrm{MM}=102.1$) produced aspirin ($\mathrm{MM}=180.2$) the mass of aspirin?
a) 8.9 g
b) 7.1 g
c) 6.9 g
d) 4.07 g

بما انه المعادلة كالتالي
acetic anhydride + salicylic acid \rightarrow aspirin + acetic acid
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \rightarrow \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

$$
\begin{aligned}
& \text { نحسب عدد مولات المتفاعلات لايجاد ال } \\
& \text { limiting reactant } \\
& \# \text { moles of acetic anhydride }=\frac{\text { mass }}{\text { molar mass }}=\frac{4.08}{102.1}=0.0399 \mathrm{~mol} \\
& \# \text { moles of salicylic acid }=\frac{\text { mass }}{\text { molar mass }}=\frac{6.9}{138.1}=0.0499 \mathrm{~mol}
\end{aligned}
$$

The limiting reactant is acetic anhydride so

$\#$ moles of Aspirin $=\#$ moles of acetic anhydride $=0.0399$ mole

Mass of Aspirin $=\# m o l e s$ of aspirin \times Molar mass $=0.0399 \times 180.2$

$$
=7.1 \mathrm{~g}
$$

Which of the following is correct about acid and base?
a) Base give hydroxide in solution and have bitter taste and turn litmus paper to the blue
b) Acid give hydronium ion in solution and have sour taste and turn the litmus paper to the yellow
\qquad

The good solvent soluble should be ?
a) High temperature confection towards the purified
b) low temperature confection toward the impurity
c) low temperature confection towards the purified
d) High temperature confection towards the impurity
e) A and B

When 11 moles of O_{2} reacts with 1.1 mole of $\mathrm{C}_{10} \mathrm{H}_{8}$, what is the limiting reactant?
$\mathrm{C}_{10} \mathrm{H}_{8}+12 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
a) O_{2}
b) $\mathrm{H}_{2} \mathrm{O}$
c) CO_{2}
d) $\mathrm{C}_{10} \mathrm{H}_{8}$
what is the Signs for the chemical reaction دلات ححوث التفاعل الكيميائئى
a) odor
b) color
c) percipitate
d) gas
e) All of the answer

For the reaction of alkene and alkyne with permenganate in acidic which one is correct ?
اخر تجربة (Baeyer Test)
a) All of the answer
b) secondary hydrogen sulfate produced
c) the reaction is discribed acid - base reaction
d) Diol is produced

What is the color given from bromophonel blue in acidic solution?
a) Yellow
b) Blue
c) Pink
d) Colorless

The ideal gas is one of the following تجربة رقم (6) molar mass of volatile liquids
a) has no color
b) zero volume
c) no interaction between the molecules
d) b and c

What color do anthrance with $\mathrm{AlCL}_{3}, \mathrm{CHCL}_{3}$? خر تجربة
a) Green
b) Blue
c) Orange-red
d) yellow

Which of the following is true about group (I) functional اخر تجربة
a) Alkanes are the most unreactive compound
b) Alkanes are the most reactive compound
AgNO_{3} make a precipitate with what of the following?
a) $\mathrm{NH}_{4} \mathrm{Cl}$ with Nacl
b) NaCl
c) MgSO_{4}
d) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
e) $\mathrm{NH}_{4} \mathrm{Cl}$

Two solutions are added together and the new solution becomes hot.
a) A chemical change is taking place حدث تفاعل
b) the solutions are not soluble
c) the physical properties are the same
d) a gas is being produced

The density of a substance is 1.63 grams per milliliter. What is the mass of 0.25 liters of the substance in grams?
يجب التّحويل من لتّ الـى مل
a) 400.7 g
b) 398.1 g
c) 407.5 g
d) 409.5 g

$$
\text { Density }=\frac{\text { mass }}{\text { volume }} \rightarrow 1.63=\frac{\text { mass }}{250} \rightarrow \text { mass }=1.63 \times 250=407.5 \mathrm{~g}
$$

One of the following is correct about tap water:
a) natural since it is highly pure
b) none of the answers
c) Basic because burning coal produce NH_{3} to the atmosphere which is basic
d) it is acidic since dissociated atmosphere CO_{2} react with water to produce acid
732.9 g of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(\mathrm{MM}=244.3) 760.2 \mathrm{~g}$ of $\mathrm{Na}\left(\mathrm{PO}_{4}\right)_{2} .12 \mathrm{H}_{2} \mathrm{O}(\mathrm{MM}=380.1)$ and be a precipitate of a $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ Which the correct when the supernatant solution is tested ? تجربة رقم
(3) limiting reactant
a) The test is positive for Ba^{+2} ion
b) The test is positive for $\mathrm{PO}_{4}{ }^{-3}$
c) The test is negative for both barium and $\mathrm{PO}_{4}{ }^{-3}$
d) The test is positive for both.
(5) تجربة رقم : Neutralizing effectiveness of anti acid defined by
a) A number of mole of antacid base per gram of antacid tablet
b) number of gram of base per mole antacid
c) number of mole of NaOH in tablet per number of mole HCl in stomach
d) A and B

Which of the following is base?
a) HNO_{3}
b) HCl
c) NaOH
d) None of these is correct

One of them is acid
a) HCl
b) NaOH
c) NaNO_{3}
d) CaCO_{3}

Most of the Anti-acids ingredients are
a) Water insoluble
b) Ethanol soluble
c) Water soluble
d) All are not correct

Anti-acids are:
a) The product that neutralizes stomach basicity.
b) The product that neutralizes stomach acidity.
c) The product that neutralizes stomach basicity and acidity.
d) The product that neutralizes stomach basicity or acidity.

Spectator ion is:
a) an ion that exists as a reactant and a product in a chemical equation.
b) Spectator ions can be observed in the reaction of aqueous solutions of sodium chloride and copper (II) sulfate
c) an ion that exists as a product only in a chemical equation.
d) $a+b$

Limiting reactant is a reagent that is completely consumed during a chemical reaction.
a) True
b) False
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3}$ Gives: انتبه ل حالة المادة
a) $\mathrm{CO}_{2}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{NaCl}(\mathrm{aq})$
b) $\mathrm{CO}_{2}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{NaCl}(\mathrm{s})$
c) $\mathbf{C O}_{2}($ g $)+\mathbf{H}_{2} \mathrm{O}(\mathrm{I})+\mathbf{2 N a C l}(\mathrm{aq})$
d) $\mathrm{CO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{NaCl}(\mathrm{aq})$

