

Presented By : Mustafa Kharma

EXPERIMENT 3 – LIMITING REACTANT

OBJECTIVES:

- To determine the limiting reactant in a mixture of two soluble salts by a precipitation test.
- ► To determine the percent composition of a salt mixture.

• Two factors influence the yield of products in a chemical reaction :

- 1. The amount of starting materials (reactants)
- 2. The percent yield of the reaction (الانتاجية المئوية): (Not all reactions go 100% to completion)

= (actual yield / theoretical yield) × 100%

 \checkmark **Percent yield:** the percent of the theoretical yield that was actually obtained.

V Actual yield (الانتاجية الفعلية): the amount of product actually produced by a chemical

reaction.

Theoretical yield (الإنتاجية النظرية): the amount of product that can be made in a chemical
 reaction based on the amount of limiting reactant.

Presented By : Mustafa Kharma

Many experimental conditions (temperature and pressure, catalyst...), can be adjusted to increase the yield of a desired product (amount of product) in a chemical reaction, but this depends on the amount of limiting reactant (LR).

Most industrial processes involve limiting reactant situations

(الحسابات الكيميائية) Stoichiometry

Stoichiometry is the quantitative relationship between the reactants and products in a

balanced chemical equation.

$aA + bB \rightarrow cC + dD$

The equation of the chemical reaction shows that substances react in fixed mole ratios.

What is a limiting reactant ?

Limiting reactant

the reactant that is consumed first in a chemical reaction and therefore limits the amount of product that can be formed.

(المتفاعل الزائد) Reactant in excess

the reactant that occurs in a quantity greater than needed to completely react with the limiting reactant.

(OR the reactant that is left over after the reaction is complete is called the excess reactant)

- Determining the limiting reactant
- \checkmark calculate the amount of product (mol or g) formed from each reactant
- ✓ identify the limiting reactant, it is the reactant that will produce the least amount of product.
- \checkmark the other reactant is the one in excess.

Calculating the amount of the reactant in excess that remains after the reaction

- I. calculate the reacted amount of the reactant in excess.
- II. subtract this amount from the starting (initial) amount of this reactant.

Writing net ionic equations

- 1. write the balanced molecular equation
- 2. write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
- 3. cancel the spectator ions on both sides of the ionic equation to get the net ionic equation.

Presented By : Mustafa Kharma

Rules for writing ionic equations

- \checkmark strong electrolytes in solution are written in their ionic form.
- \checkmark weak electrolytes are written in their molecular (un-ionized) form.
- \checkmark non electrolytes are written in their molecular form.
- \checkmark insoluble substances (precipitates + gasses) = molecular form.
- ✓ the net ionic equation should only include substances that have undergone a chemical change.
- \checkmark spectator ions are omitted from the net ionic equation.
- \checkmark equations must be balanced both in atoms and in electrical charge.

Procedure Overview: In this experiment

- 1. A measured mass of a solid Na₃PO₄.12H₂O / BaCl₂.2H₂O salt mixture (sample) of unknown composition is added to water.
- 2. The precipitate (barium phosphate) that forms is digested, filtered, dried, and weighed.
- 3. Observations from tests on the **supernatant** solution (the liquid left after the solid is removed) determine which salt in the mixture is the limiting reactant.
- 4. An analysis of the data provides the determination of the percent composition of the salt mixture.

Formation of a precipitate indicates the presence of that ion. Therefore that ion is present in excess and is not the L.R

Background Information for Lab

To better understand the concept of the limiting reactant, let's look at the reaction that is under investigation in this experiment:

The reaction of sodium phosphate dodecahydrate, Na₃PO₄.12H₂O and barium chloride dihydrate, BaCl₂.2H₂O.

```
■ The molecular equation ( معادلة جزيئية ) is:
```

```
2Na_{3}PO_{4}.12H_{2}O(aq) + 3 BaCl_{2}.2H_{2}O(aq) \rightarrow Ba_{3}(PO_{4})_{2}(s) + 6 NaCl(aq) + 30 H_{2}O(l)
```

Barium Phosphate is the insoluble product (ppt), while Sodium Chloride remains in solution, see appendix G

The ionic equation can be written:

```
6Na+ + 2PO_4^{3-} + 24H_2O + 3Ba^{2+} + 6CI- + 6H_2O \rightarrow Ba_3(PO_4)_2(s) + 6Na+ + 6CI- + 30H_2O
```

The 'spectator ions (أيونات المتفرج) can be cancelled out, leaving the net ionic eqn.
(صافي المعادلة الأيونى)

Presented By : Mustafa Kharma

A **spectator ion** is an ion that exists as a reactant and a product in a chemical equation.

The Na+ and Cl- ions are spectator ions since they remain unchanged on both sides of the equation. They simply "watch" the other ions react, hence the name. In reaction stoichiometry, spectator ions are removed from a complete ionic equation to form a net ionic equation.

Calculations As In The Following Example:

A 0.942 g sample of salt mixture (Na₃PO₄.12H₂O (molar mass: 380.12 g/mol) and BaCl₂.2H₂O (244.27 g/mol) is added to water and 0.188 g of Ba₃(PO₄)₂ , (601.96 g/mol) precipitate forms. Tests reveal that BaCl₂.2H₂O is the limiting reactant. What is the % composition of salt mixture?

Solution (Answer)

► U can solve this question either by using the molecular eqn or the net ionic equation

The net ionic eqn is $2 PO_4^{3-}(aq) + 3 Ba^{2+}(aq) \rightarrow Ba_3(PO_4)_2(s), 0.188 g ppt.$

► Convert 0.188 g Ba₃(PO₄)₂ to g limiting reactant (BaCl₂.2H₂O)

Mass BaCl₂.2H₂O = 0.188 g Ba₃(PO₄)₂ * (1 mol Ba₃(PO₄)₂ / 601.96 g Ba₃(PO₄)₂) *3 mol BaCl₂.2H₂O/1 mol Ba₃(PO₄)₂) * 244.27 g BaCl₂.2H₂O/1 mol BaCl₂.2H₂O = 0.229 g of BaCl₂.2H₂O in sample = 0.229 / 0.942 x 100 = 24.3% %

Mass of Na₃PO₄.12H₂O in the sample = 0.942 - 0.229 = 0.713 of Na₃PO₄.12H₂O in sample = $0.713 / 0.942 \times 100 = 75.7\%$ %

Experiment 8 Limiting Reactant. Prelaboratory Assignment

- 1. The limiting reactant is determined in this experiment
- a. What are the reactants (and their molar masses) in the experiment?
- b. What is the product (and its molar mass) that is used for determining the limiting reactant?
- c. Write the molecular eqn and the net ionic eqn.
- d. How is the limiting reactant determined in the experiment?
- 2. Experimental Procedure, Part A.2. What is the procedure and purpose of "digesting the precipitate?
- 3. Two special steps in the Experimental Procedure are incorporated to reduce the loss of the calcium oxalate precipitate. Identify the steps in the procedure and the reason for each step.

Answer:

Digest the precipitate (ppt) and a fine porosity filter paper is used for filtering the ppt

Presented By : Mustafa Kharma

4. A 0.972-g sample of a CaCl₂.2H₂O/K₂C₂O₄ .H₂O solid salt mixture is dissolved in 150 mL of deionized water, previously adjusted to a pH that is basic. The precipitate, after having been filtered and air-dried, has a mass of 0.375 g. The limiting reactant in the salt mixture was later determined to be CaCl₂ .2H₂O.

- a. What is the percent by mass of CaCl₂.2H₂O in the salt mixture?
- b. How many grams of the excess reactant, K₂C₂O₄ .H₂O, reacted in the mixture?
- c. How many grams of the $K_2C_2O_4$. H_2O in the salt mixture remain unreacted?

Answer:

a.
$$0.375 \text{ g } \text{CaC}_2\text{O}_4 \bullet \text{H}_2\text{O} \times \frac{\text{mol}}{146.12 \text{ g}} \times \frac{1 \text{ mol } \text{CaC}_1 \bullet 2\text{H}_2\text{O}}{1 \text{ mol } \text{CaC}_2\text{O}_4 \bullet \text{H}_2\text{O}} \times \frac{147.02 \text{ g}}{\text{mol}}$$

= $0.377 \text{ g } \text{CaC}_2 \bullet 2\text{H}_2\text{O}$
% $\text{CaC}_2 \bullet 2\text{H}_2\text{O} = \frac{0.377 \text{ g}}{0.972 \text{ g}} \times 100 = 38.8\% \text{ CaC}_2 \bullet 2\text{H}_2\text{O}$

- b. $0.375 \text{ g } \text{CaC}_2\text{O}_4 \bullet \text{H}_2\text{O} \times \frac{\text{mol}}{146.12 \text{ g}} \times \frac{1 \text{ mol} \text{ K}_2\text{C}_2\text{O}_4 \bullet \text{H}_2\text{O}}{1 \text{ mol} \text{ CaC}_2\text{O}_4 \bullet \text{H}_2\text{O}} \times \frac{184.24 \text{ g}}{\text{mol}}$ = 0.473 g K_2\text{C}_2\text{O}_4 \bullet \text{H}_2\text{O} that reacts
- c. The mass of excess $K_2C_2O_4 \bullet H_2O = 0.972 (0.377 \text{ g} + 0.473 \text{ g})$ = 0.122 g excess $K_2C_2O_4 \bullet H_2O$

Presented By : Mustafa Kharma

5. g mixture of the solid salts Na₂SO₄(molar mass 142.04 g/mol) and-1.009 Pb(NO₃)₂(molar mass 331.20 g/mol) forms an aqueous solution with the precipitation of PbSO₄ (molar mass 303.26 g/mol). The precipitate was filtered and dried, and its mass was determined to be 0.471 g. The limiting reactant was determined to be Na₂SO₄.

- a. Write the molecular form of the equation for the reaction
- b. Write the net ionic equation for the reaction
- c. How many moles and grams of Na₂SO₄ are in the reaction mixture?
- d. How many moles and grams of $Pb(NO_3)_2$ reacted in the reaction mixture?
- e. What is the percent by mass of each salt in the mixture?

Answer:

a. Na₂SO₄ + Pb(NO₃)₂ → PbSO₄ + 2 NaNO₃
b. Pb²⁺(aq) + SO₄²⁻(aq) → PbSO₄(s)
c. 0.471g PbSO₄ x
$$\frac{\text{mol PbSO_4}}{303.26 \text{ g}}$$
 x $\frac{1 \text{ mol Na_2SO_4}}{1 \text{ mol PbSO_4}}$ = 1.55 x 10⁻³ mol Na₂SO₄
1.55 x 10⁻³ mol Na₂SO₄ x $\frac{142.04 \text{ g Na_2SO_4}}{\text{mol}}$ = 0.221 g Na₂SO₄
d. 0.471g PbSO₄ x $\frac{\text{mol PbSO_4}}{303.26 \text{ g}}$ x $\frac{1 \text{ mol Pb(NO_3)_2}}{1 \text{ mol PbSO_4}}$ = 1.55 x 10⁻³ mol Pb(NO₃)₂
1.55 x 10⁻³ mol Pb(NO₃)₂ x $\frac{331.20 \text{ g Na_2SO_4}}{\text{mol}}$ = 0.514 g Pb(NO₃)₂ reacted
e. $\frac{0.221 \text{ g Na_2SO_4}}{1.009 \text{ g sample}}$ x 100 = 21.9% Na₂SO₄; 78.1% Pb(NO₃)₂

Presented By : Mustafa Kharma

Post Laboratory Questions:

1. Diborane, B2H6, can be produced by the following reaction:

 $NaBH_4(aq) + H_2SO_4(aq) \rightarrow H_2(g) + Na_2SO_4(aq) + B_2H_6(g)$

What is the maximum quantity, in grams, of B₂H₆ that can be prepared starting with 250. mL

of 0.0875 M H_2SO_4 and 1.55g of NaBH₄?

2. Part A.2. If the step for digesting the precipitate were omitted, what would be the probable

consequence of reporting the "percent limiting reactant" in the salt mixture? Explain

Answer:

Too low. If the CaC_2O_4 precipitate were not digested, more would be lost through the filtering process—less product would infer less limiting reactant in the initial sample mixture.

3. Part A.6, 7. The drying oven, although thought (and assumed) to be set at 125C, had an inside temperature of 84°C. How will this error affect the reported percent by mass of the limiting reactant in the salt mixture . . . too high, too low, or unaffected? Explain.

Answer:

Too high. An erred mass that is too high infers a greater mass of limiting reactant in the salt mixture. The percent limiting reactant will be reported too high.

21111 211191.161. NOT H91.061.