EXPERIMENT 3 - LIMITING REACTANT

OBJECTIVES:

- To determine the limiting reactant in a mixture of two soluble salts by a precipitation test.
- To determine the percent composition of a salt mixture.

- Two factors influence the yield of products in a chemical reaction :

1. The amount of starting materials (reactants)
2. The percent yield of the reaction (الانتاجية المئوية): (Not all reactions go 100% to completion)

$$
\text { = (actual yield / theoretical yield) } \times 100 \%
$$

\checkmark Percent yield: the percent of the theoretical yield that was actually obtained.
\checkmark Actual yield (الانتاجية الفعلية) : the amount of product actually produced by a chemical reaction.
\checkmark Theoretical yield (الانتاجية النظرية): the amount of product that can be made in a chemical reaction based on the amount of limiting reactant.

Many experimental conditions (temperature and pressure, catalyst...), can be adjusted to increase the yield of a desired product (amount of product) in a chemical reaction, but this depends on the amount of limiting reactant (LR).

Most industrial processes involve limiting reactant situations

Stoichiometry (الحسابات الكيميائية)

Stoichiometry is the quantitative relationship between the reactants and products in a balanced chemical equation.

$$
\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}
$$

The equation of the chemical reaction shows that substances react in fixed mole ratios.

What is a limiting reactant ?

\square Limiting reactant
the reactant that is consumed first in a chemical reaction and therefore limits the amount of product that can be formed.

Reactant in excess (المتفاعل الزائد)
the reactant that occurs in a quantity greater than needed to completely react with the limiting reactant.
(OR the reactant that is left over after the reaction is complete is called the excess reactant)

Determining the limiting reactant

\checkmark calculate the amount of product (mol or g) formed from each reactant
\checkmark identify the limiting reactant, it is the reactant that will produce the least amount of product.
\checkmark the other reactant is the one in excess.

Calculating the amount of the reactant in excess that remains after the reaction
I. calculate the reacted amount of the reactant in excess.
II. subtract this amount from the starting (initial) amount of this reactant.

Writing net ionic equations

1. write the balanced molecular equation
2. write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
3. cancel the spectator ions on both sides of the ionic equation to get the net ionic equation.

Rules for writing ionic equations

\checkmark strong electrolytes in solution are written in their ionic form.
\checkmark weak electrolytes are written in their molecular (un-ionized) form.
\checkmark non electrolytes are written in their molecular form.
\checkmark insoluble substances $($ precipitates + gasses $)=$ molecular form.
\checkmark the net ionic equation should only include substances that have undergone a chemical change.
\checkmark spectator ions are omitted from the net ionic equation.
\checkmark equations must be balanced both in atoms and in electrical charge.

Procedure Overview: In this experiment

1. A measured mass of a solid $\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} / \mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ salt mixture (sample) of unknown composition is added to water.
2. The precipitate (barium phosphate) that forms is digested, filtered, dried, and weighed.
3. Observations from tests on the supernatant solution (the liquid left after the solid is removed) determine which salt in the mixture is the limiting reactant.
4. An analysis of the data provides the determination of the percent composition of the salt mixture.
5. measure a mass of solid sodium phosphate/barium chloride mix 2. Add water
6. A precipitate of barium phosphate is formed
7. Use filtration to collect the $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

The $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is
recovered from
the filter paper
I

Remove the precipitate from the filter paper, dry and record weight

Formation of a precipitate indicates the presence of that ion. Therefore that ion is present in excess and is not the L.R

Background Information for Lab

To better understand the concept of the limiting reactant, let's look at the reaction that is under investigation in this experiment:

The reaction of sodium phosphate dodecahydrate, $\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ and barium chloride dihydrate, $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$.

■ The molecular equation (معادلة جزيئية) is:

$$
2 \mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+3 \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{NaCl}(\mathrm{aq})+30 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Barium Phosphate is the insoluble product (ppt), while Sodium Chloride remains in solution, see appendix G
$■$ The ionic equation can be written:

$$
6 \mathrm{Na}++2 \mathrm{PO}_{4}{ }^{3-}+24 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ba}^{2+}+6 \mathrm{Cl}-+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{Na}++6 \mathrm{Cl}-+30 \mathrm{H}_{2} \mathrm{O}
$$

■ The 'spectator ions (أيونات المتفرج) can be cancelled out, leaving the net ionic eqn. (صافي المعادلة الأيونى)

$$
2 \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+3 \mathrm{Ba}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})
$$

* A spectator ion is an ion that exists as a reactant and a product in a chemical equation.

The Na+ and Cl- ions are spectator ions since they remain unchanged on both sides of the equation. They simply "watch" the other ions react, hence the name. In reaction stoichiometry, spectator ions are removed from a complete ionic equation to form a net ionic equation.

Calculations As In The Following Example:

A 0.942 g sample of salt mixture ($\mathrm{Na}_{3} \mathrm{PO}_{4} .12 \mathrm{H}_{2} \mathrm{O}$ (molar mass: $380.12 \mathrm{~g} / \mathrm{mol}$) and $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ $(244.27 \mathrm{~g} / \mathrm{mol})$ is added to water and 0.188 g of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2},(601.96 \mathrm{~g} / \mathrm{mol})$ precipitate forms. Tests reveal that $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ is the limiting reactant. What is the \% composition of salt mixture?

Solution (Answer)

- U can solve this question either by using the molecular eqn or the net ionic equation

The net ionic eqn is $2 \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+3 \mathrm{Ba}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}), 0.188 \mathrm{~g} \mathrm{ppt}$.

Convert $0.188 \mathrm{~g} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ to g limiting reactant $\left(\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\right)$

Mass $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}=0.188 \mathrm{~g} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2} *\left(1 \mathrm{~mol} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2} / 601.96 \mathrm{~g} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$
*3 mol BaCl $\left.2.2 \mathrm{H}_{2} \mathrm{O} / 1 \mathrm{~mol} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right) * 244.27 \mathrm{~g} \mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O} / 1 \mathrm{~mol} \mathrm{BaCl} 2.2 \mathrm{H}_{2} \mathrm{O}=0.229 \mathrm{~g}$ of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ in sample $=0.229 / 0.942 \times 100=24.3 \% \%$

Mass of $\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ in the sample $=0.942-0.229=0.713$ of $\mathrm{Na}_{3} \mathrm{PO}_{4} .12 \mathrm{H}_{2} \mathrm{O}$ in sample $=0.713 / 0.942 \times 100=75.7 \% \%$

Experiment 8 Limiting Reactant. Prelaboratory Assignment

1. The limiting reactant is determined in this experiment
a. What are the reactants (and their molar masses) in the experiment?
b. What is the product (and its molar mass) that is used for determining the limiting reactant?
c. Write the molecular eqn and the net ionic eqn.
d. How is the limiting reactant determined in the experiment?
2. Experimental Procedure, Part A.2. What is the procedure and purpose of "digesting the precipitate?
3. Two special steps in the Experimental Procedure are incorporated to reduce the loss of the calcium oxalate precipitate. Identify the steps in the procedure and the reason for each step.

Answer:

Digest the precipitate (ppt) and a fine porosity filter paper is used for filtering the ppt

Presented By :

Mustafa Kharma
4. A 0.972-g sample of a $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} / \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}$ solid salt mixture is dissolved in 150 mL of deionized water, previously adjusted to a pH that is basic. The precipitate, after having been filtered and air-dried, has a mass of 0.375 g . The limiting reactant in the salt mixture was later determined to be $\mathrm{CaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$.
a. What is the percent by mass of $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the salt mixture?
b. How many grams of the excess reactant, $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}$, reacted in the mixture?
c. How many grams of the $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}$ in the salt mixture remain unreacted?

Answer:

a. $0.375 \mathrm{~g} \mathrm{CaC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mol}}{146.12 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{CaCl}}{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~mol} \mathrm{CaC}_{2} \mathrm{O}_{4} \bullet \mathrm{H}_{2} \mathrm{O} \times \frac{147.02 \mathrm{~g}}{\mathrm{~mol}}\right.$ $=0.377 \mathrm{~g} \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\% \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=\frac{0.377 \mathrm{~g}}{0.972 \mathrm{~g}} \times 100=38.8 \% \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
b. $\quad 0.375 \mathrm{~g} \mathrm{CaC}_{2} \mathrm{O}_{4} \bullet \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mol}}{146.12 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \bullet \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CaC}_{2} \mathrm{O}_{4} \bullet \mathrm{H}_{2} \mathrm{O}} \times \frac{184.24 \mathrm{~g}}{\mathrm{~mol}}$ $=0.473 \mathrm{~g} \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \bullet \mathrm{H}_{2} \mathrm{O}$ that reacts
c. The mass of excess $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \bullet \mathrm{H}_{2} \mathrm{O}=0.972-(0.377 \mathrm{~g}+0.473 \mathrm{~g})$ $=0.122 \mathrm{~g}$ excess $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \bullet \mathrm{H}_{2} \mathrm{O}$
5. g mixture of the solid salts $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (molar mass $142.04 \mathrm{~g} / \mathrm{mol}$) and-1.009 $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ (molar mass $331.20 \mathrm{~g} / \mathrm{mol}$) forms an aqueous solution with the precipitation of PbSO_{4} (molar mass $303.26 \mathrm{~g} / \mathrm{mol})$. The precipitate was filtered and dried, and its mass was determined to be 0.471 g . The limiting reactant was determined to be $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
a. Write the molecular form of the equation for the reaction
b. Write the net ionic equation for the reaction
c. How many moles and grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are in the reaction mixture?
d. How many moles and grams of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacted in the reaction mixture?
e. What is the percent by mass of each salt in the mixture?

Answer:
a. $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{NaNO}_{3}$
b. $\mathrm{Pb}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q) \rightarrow \mathrm{PbSO}_{4}(s)$
c. $\quad 0.471 \mathrm{~g} \mathrm{PbSO}_{4} \times \frac{\mathrm{mol} \mathrm{PbSO}_{4}}{303.26 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{PbSO}_{4}}=1.55 \times 10^{-3} \mathrm{~mol} \mathrm{Na} \mathrm{SO}_{4}$
$1.55 \times 10^{-3} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{142.04 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~mol}}=0.221 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$
d. $0.471 \mathrm{~g} \mathrm{PbSO}_{4} \times \frac{\mathrm{mol} \mathrm{PbSO}_{4}}{303.26 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~mol} \mathrm{PbSO}_{4}}=1.55 \times 10^{-3} \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$
$1.55 \times 10^{-3} \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{331.20 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~mol}}=0.514 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacted
e. $\frac{0.221 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1.009 \mathrm{~g} \mathrm{sample}} \times 100=21.9 \% \mathrm{Na}_{2} \mathrm{SO}_{4} ; 78.1 \% \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$

Post Laboratory Questions:

1. Diborane, B2H6, can be produced by the following reaction:

$$
\mathrm{NaBH}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

What is the maximum quantity, in grams, of $\mathrm{B}_{2} \mathrm{H}_{6}$ that can be prepared starting with 250 mL of $0.0875 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 1.55 g of NaBH_{4} ?
2. Part A.2. If the step for digesting the precipitate were omitted, what would be the probable consequence of reporting the "percent limiting reactant" in the salt mixture? Explain Answer:

Too low. If the $\mathrm{CaC}_{2} \mathrm{O}_{4}$ precipitate were not digested, more would be lost through the filtering process-less product would infer less limiting reactant in the initial sample mixture.
3. Part A.6, 7. The drying oven, although thought (and assumed) to be set at 125C, had an inside temperature of $84^{\circ} \mathrm{C}$. How will this error affect the reported percent by mass of the limiting reactant in the salt mixture . . . too high, too low, or unaffected? Explain.

Answer:

Too high. An erred mass that is too high infers a greater mass of limiting reactant in the salt mixture. The percent limiting reactant will be reported too high.

