EXPERIMENT 4 - ACIDS, BASES AND SALTS

Purposes:

1) To become familiar with the chemical properties of acids, bases, and salts
2) To estimate the pH of household preparations and laboratory common acids, bases, and salts
3) To write equations that account for observations from chemical reactions

Some Definitions

Arrhenius acids and bases
Acid: Substance that, when dissolved in water, increases the concentration of hydrogen/hydronium ions (protons, $\mathrm{H}+$ or $\mathrm{H} 3 \mathrm{O}+$).

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}+(\mathrm{aq})+\mathrm{Cl}-(\mathrm{aq})
$$

Base: Substance that, when dissolved in water, increases the concentration of hydroxide ions, $\mathrm{OH}-$

$$
\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}+(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})
$$

Brønsted-Lowry: must have both

1. An Acid: proton donor and
2. Base: proton acceptor (...must have a pair of nonbonding a electrons)
$\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)$

Which is the acid and which is the base in each of these runs?
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Cl}^{-} \cdots \mathrm{H}^{+} \cdots \mathrm{H}_{2} \mathrm{O}\right] \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{NH}_{3} \cdots \mathrm{H}^{+} \cdots \mathrm{OH}^{-}\right] \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

Properties of Acidic solutions

An Acid is a substance that produces hydrogen ions (H+ or Hydronium ion, $\mathrm{H}_{3} \mathrm{O}+$) in $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{pH}<7$

1) Taste sour or tart طعم حامض أو لاذع
2) Cause a pricking sensation on the skin الإحساس بالوخز
3) Turn blue litmus (vegetable dye) red
4) React with several metals (e.g., Zn and Mg) releasing $\mathrm{H}_{2}(\mathrm{~g}) \Rightarrow$ acids corrode metals
5) Corrosive: burn your skin مادة أكالة: تحرق بشرتّك
6) react with base to form salt and water $\left(\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}\right)$
7) Act as electrolytes in solution \rightarrow conduct electricity
8) React with carbonates releasing $\mathrm{CO}_{2}(\mathrm{~g})$

Most of the foods and drinks are acidic

Example:

think of lemon juice as being quite acidic to taste but milk not quite so (slightly acidic)

Types of acids

1) Nonoxidixing acids such as $\mathbf{H C l}{ }^{26}$, acetic acid ${ }^{35}$ and $\mathbf{H}_{3} \mathrm{PO}_{4}{ }^{7}$

Example: $\quad \mathrm{HCl}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnCl}_{2}(\mathrm{aq})$
2) Oxidizing acids: these are concentrated and strong acids.
generate hydronium ,(ranked no 1 in usage, oil of vitriol (زيت الزاج)) dilute $\mathrm{HNO}_{3}{ }^{13}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{1}$ ions in water.

For conc
$\mathrm{HNO}_{3}(\mathrm{aq}), \mathrm{Cu}(\mathrm{s})+4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}$, blue $)+2 \mathrm{NO}_{2}(\mathrm{~g}$, red-brown gas $)+2 \mathrm{H}_{2} \mathrm{O}$
Concentrated $\mathrm{HNO}_{3}{ }^{13}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{1}$ are of excellent oxidizing properties.

Acidic aqueous solutions result from the reaction of a

1- Nometallic hydride with water
$\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}+(\mathrm{aq})+\mathrm{Cl}-(\mathrm{aq})$
2- Nometallic oxide with water
$\mathrm{SO}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H} 3 \mathrm{O}+(\mathrm{aq})+\mathrm{HSO}_{4}-(\mathrm{aq})$
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}+(\mathrm{aq})+\mathrm{HCO}_{3}-(\mathrm{aq})$
3- molecular species with water such as citric acid, ascorbic acid (vitamin C) and acetic, acid found in vinegar
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}+(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}-(\mathrm{aq})$

Acids you must know:

Common Strong Acids:
dissociation in water, good proton 100%
donors
Hydrochloric acid, HCl
Nitric acid, HNO_{3}
Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$
Perchloric acid, HClO_{4}

Uses of acids

- $\mathrm{H}_{3} \mathrm{PO}_{4}$ - soft drinks, fertilizer, detergents
- $\mathrm{H}_{2} \mathrm{SO}_{4}$ - fertilizer, car batteries
- HCl - gastric juice, Stomach acid
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ - vinegar

Common Weak Acids

dissociation in water, poor proton 5% >
donors

Phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$
Acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
Citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$

Some common acids. From
cider vinegar to carbonated beverages, from fruits and fruit juices to rust removers, acids are in our food and household chemicals.

Some common bases. From the antacids we take internally to the chemicals we use to remove grease and wax, we depend on these chemicals we call alkalies or bases.

Presented By :
Mustafa Kharma

Properties of Bases

Produce or cause an increase in hydroxide ions (OH-) in $\mathrm{H} 2 \mathrm{O}, \mathrm{pH}>7$

* Taste bitter طعم مر
* Have a slippery touch ‘soapy’ feel ملمس انز لاقي
* Turn red litmus blue

Destroy body tissue/ dissolve fatty (lipid) material

* Strong bases are caustic كاوية
* Act as electrolytes in solution
* Neutralise solutions containing hydrogen ions (H+)

Properties of Acids and Bases

- Acids
- turn blue litmus red
- taste sour
- Acids corrode metals
- positively charged hydrogen ions $\left(\mathrm{H}^{+}\right)$
- Bases
- turn red litmus blue
- taste bitter
- Negatively charged hydroxide ions (OH^{-})
- Feel slippery
- Most hand soaps and drain cleaners are bases
- Strong bases are caustic

Presented By :

Mustafa Kharma

Basic aqueous solutions can result from

1- action of water on a soluble oxides (e.g., CaO) or hydroxides (e.g., NaOH)

$$
\mathrm{O}^{2-}(\mathrm{aq}, \text { from } \mathrm{CaO})+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}-(\mathrm{aq})
$$

2- Anion that reacts with water

$$
\mathrm{CO}_{3}{ }^{2-}\left(\mathrm{aq}, \text { from } \mathrm{Na}_{2} \mathrm{CO}_{3}\right)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}_{3}-(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})
$$

3 - molecular species that reacts with water

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}!\mathrm{OH}-(\mathrm{aq})+\mathrm{NH}_{4}+(\mathrm{aq})
$$

Uses of bases

- preparation of soaps and detergents NaOH - lye , drain and oven cleaner.
- , $\mathrm{Mg}(\mathrm{OH})_{2}$ - laxative, antacid
clinical applications of Antacids: to neutralize excess stomach acid.

$$
\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

- NH_{3}-cleaners, fertilizer

Some common acids. From cider vinegar to carbonated beverages, from fruits and fruit juices to rust removers, acids are in our food and household chemicals.

Some common bases. From the antacids we take internally to the chemicals we use to remove grease and wax, we depend on these chemicals we call alkalies or bases.

Presented By :

Mustafa Kharma
pH Scale
pH
a measure of the concentration of $\mathrm{H} 3 \mathrm{O}+$ ions in solution measured with a pH meter or an
indicator with a wide color range
$\mathrm{pH}=-\log [\mathrm{H}+]=-\log [\mathrm{H} 3 \mathrm{O}+]$

Lower pH value
indicates a
stronger acid.

Higher pH value indicates a stronger base.

Acids Have a pH less than 7

Bases have a pH greater than 7

Concentration in moles/liter

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Estimation the pH of aqueous solutions

\square Acid-base indicators: organic compounds whose color depends on the pH of the solution

Litmus paper: RED in an acidic solution and BLUE in a basic solution.

- Universal indicator or color plate (دليل عام أو شريحة الالوان): a mixture of acid-base indicators that can be used to approximate the pH of the solutions.

Phenolphthalein (phph): colorless (in acidic solution) to pink (in basic soln).
$\square \mathrm{pH}$ meter: give a precise value of pH .

Solutions of salts as acids or bases

Neutral salts: NaCl and $\mathrm{Na} 2 \mathrm{SO}_{4}$

Acidic salts: $\mathrm{FeCl} 3, \mathrm{AlCl} 3$ and $\mathrm{NH}_{4} \mathrm{Cl}$

Basic salts: $\mathrm{CaCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na} 3 \mathrm{PO}_{4}$

Reactions of acids with metals

Acids take part in reactions in which salts are produced. In these reactions, the hydrogen ions in the acids are replaced by metal ions.

$$
\text { Acid + metal } \rightarrow \text { salt + hydrogen }
$$

K Potassium

Na Sodium
Ca Calcium
:---
reactive

Ca Calcium Mg Magnesium
Al Aluminium
C Carbon
Zn Zinc
Fe Iron
Sn Tin
Pb Lead
H Hydrogen
Cu Copper
Ag Silver
Au Gold
Pt Platinum

For example:

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Mg}(\mathrm{~s}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

- Zn and Fe also react with hydrochloric acid.
- Mg, Zn and Fe also react with sulfuric acid. The products are a salt and hydrogen gas.

For example

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Fe}(\mathrm{~s}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Reactivity of Metals with HCl and acetic acid

https://www.youtube.com/watch?v=Na 6j9y9ke8

https://www.youtube.com/watch?v=OQDnJZGHWNw

Copper is a very unreactive metal, and it does not react with hydrochloric acid. It is above copper in a metal reactivity series, so copper cannot replace the hydrogen in $\mathbf{H C l}$ to form CuCl_{2}

Categorizing the metals according to their reactivity:
\checkmark Very rapid reaction: K, Na
\checkmark Rapid reaction: Ca, Mg
\checkmark Slow reaction: Al, Zn, Fe, Sn
\checkmark No reaction: $\mathrm{Pb}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$

Experimental Procedure

- The chemical properties of a range of acids, bases, and salts are observed.
- Write ionic and net ionic Chemical equations to account for the observations.
- The pH of selected acids, bases, and salts are estimated with pH test paper or universal indicator.
- Perform the experiment and record your observation on the Report Sheet.

Caution:

- Be very careful in handling dilute and concentrated acids and bases \Rightarrow cause severe skin burns and irritation to mucous membranes (الأغشية المخاطية).
- Clean up acid and base spills directly with excess water, and baking soda, NaHCO_{3}.
- Refer to the Laboratory Safety section at the beginning of this manual.

Presented By :

Mustafa Kharma

Action of Acids on Metals

* Place a small (1 cm) polished strip of Mg, Zn, and Cu into separate small clean test tubes. To each test tube, add just enough 6 M HCl to submerge the metal and observe for several minutes. Record your observations on the Report Sheet.

Repeat the test of the three metals with $6 \mathrm{M} \mathrm{HNO}_{3}$ and then again with $6 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ -
Relative reactivity of metals with acids.

	Mg	Zn	Cu
6 MHCl	Fast	Medium	NR
$6 \mathrm{M} \mathrm{HNO}_{3}$	Fast	Slow	Very slow
$6 \mathrm{MCH}_{3} \mathrm{COOH}$	slow	slow	NR

Effect of Acid Concentration on Reaction Rate

Set up 6 small clean test tubes having about 1.5 mL of the acid solutions shown in the following Figure. Add a small (1 cm) polished strip of Mg to each solution and explain your observations.

Figure 6.7 A setup for testing the effect of different acids and acid strengths on their reactivity with a metal.

- The reaction rate is greatest with 3 M HCl and lowest with 0.10 M HCl .
- The reaction of the Mg in the HCl solutions (strong acid) is more rapid than in acetic acid (weak acid) solutions of like concentrations.

Oxidizing strength of acids

Observe the color change, if any occur, for the reactions of the following acids with Na
\rightarrow Test tube 1. conc $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{I}-\mathrm{I} 2$ (violet) $+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$
? ?? Test tube 2. conc $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{I}-$
$3 \mathrm{NaI}+$ conc $\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{HI}+\mathrm{Na}_{3} \mathrm{PO}_{4}$

- Hold moistened blue litmus paper over each test tube to test for any escaping gases
- compare the relative oxidizing strength of these 2 acids
* Neutralizing NaOH solution with acid
$\mathrm{NaCl}+\mathrm{H} 2 \mathrm{O} \rightarrow \mathrm{NaOH}$ (strong base, aq) +HCl (strong acid, aq)
Red litmus paper Blue litmus paper
* Slaking Of Quicklime اطقاء الجير الحي
$\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CaO}(\mathrm{s})$
a base A basic oxide

A saturated solution of calcium hydroxide is called lime water, turn red litmus paper blue.

AMMONIA GAS

\square Production of ammonia
$2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH})_{2}$ (thin paste)
NH_{3} is a colorless gas with a very pungent (strong) odor
\square Test for the flammability of ammonia
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$
\square Test for the solubility of ammonia
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}-(\mathrm{aq})+\mathrm{NH}_{4}+(\mathrm{aq})$, basic solution

Ammonia gas is a weak base, which is soluble in water, and turns phenolphthalein pink
pH Measurements: Measure the pH of the following solutions by using the universal indicator, record the approximate pH and write balance equation.

1) pH of water: tap water, boiled deionized water.
2) Common solutions and salts.

- M and 0.000010 M HCl 0.10
- M NaCl (table salt) 0.10
- Vinegar
- Lemon juice
- Pepsi cola
- Household ammonia
- Detergent solution
- M NaOH 0.10
- $\mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3} 0.10$
- $\mathrm{M} \mathrm{Na}{ }_{3} \mathrm{PO}_{4} 0.10$

