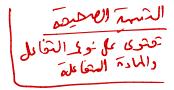
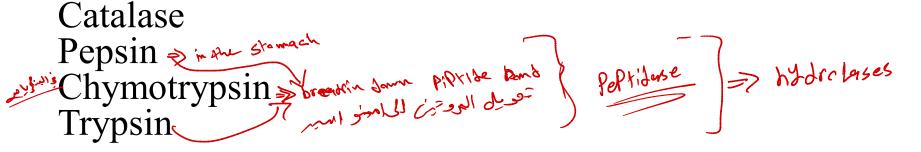

Enzymology-An overview-1 Introduction about it.


* Turn over number ->> is the mumber of substrate molecules to be convert into Product mo lecules Per unit enzyme Per one second.

X If the enzyme is founded in the dead animal under the land the AstroLum will Produce very first. Ann If the enzyme not familed

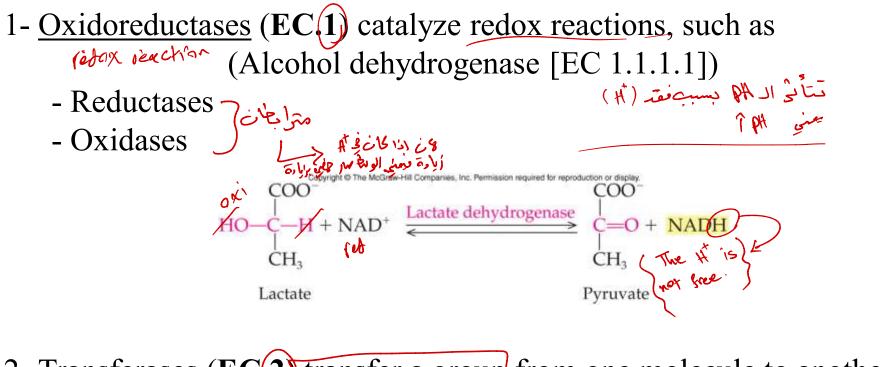
under the high rempreture and Pressure-Digi lang c. de Digi l

-The common name for a hydrolase is derived from the substrate

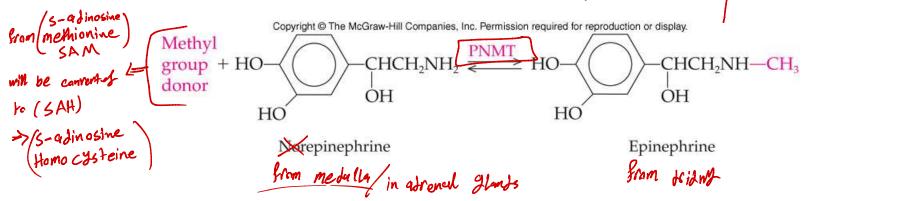

Urea: remove -a, replace with -ase = urease Lactose: remove - ose, replace with - ase = lactase

- Other enzymes are named for the substrate and the reaction catalyzed
- V Lactate dehydrogenase H
- V Pyruvate decarboxylase on

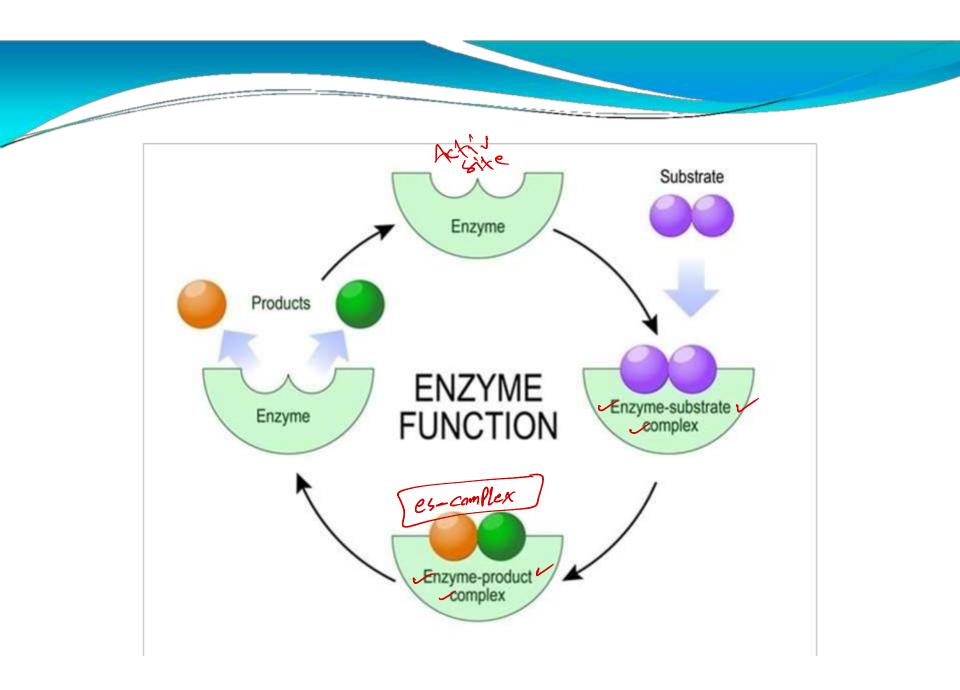
Nomenclature of enzymes


-In most cases, enzyme names end in **—ase**

- Some names are historical - no direct relationship to substrate or reaction type


Classification of Enzymes

- Enzyme Commission (EC) according to International Union of Biochemistry and Molecular Biology (IUBMB)
- Each enzyme was given 4 digit numbers $\begin{bmatrix} \frac{b}{1.2.3.4} \end{bmatrix}$
 - [1.2.3.4] CNS (commission merical code)
- 1st one of the 6 major classes of enzyme activity
- 2nd the subclass (type of substrate or bond cleaved)
- 3^{rd} the sub-subclass (group acted upon, cofactor required, etc...)
- 4th a serial number... (order in which enzyme was added to list)


2- Transferases (EC(2) transfer a group from one molecule to another, (Hexokinase [EC 2.7.1.2]) such as -Transaminases catalyze transfer of an amino group Transferuses

- Kinases transfer a phosphate group ATP / ADP

3-<u>Hydrolases</u> (EC.3) cleave bonds by adding water, such as (Alkaline phosphatase [EC 3.1.3.1]) - Phosphatases V - Peptidases - Lipases, CH₃-O-C(CH₃).CH CH₂OH $C(CH_2)_{*}CH_3 + 3H_2O$ CHOH + 3CH₃(CH₂), COOH Ester CH₂OH $CH_{3}-O-C(CH_{3})_{*}CH_{3}$ Triglyceride Glycerol Fatty acids Lyases (EC.4) catalyze removal of groups to form double bonds or the reverse break double bonds, such as (Pyruvate decarboxylase [EC 4.1.1.1]) - Decarboxylases - Synthases he McGraw-Hill Companies, Inc. Parmasion secured for seconduction or diaria COO-COO - Fumarases Fumarase Add ing water just to the double bands not H H-C-HCOO COO simple bands Malate Fumarate # to converte double bands to comple

5- Isomerases (EC.5) catalyze intramolecular rearrangements, such as (Alanine racemase [EC 5.1.1.1]) - Epimerases Mutases -00 COC Phosphoglycerate mutase H-C-OН Н-С-Н H-C-H O OH 0 - P = 03-Phosphoglycerate 2-Phosphoglycerate 6-<u>Ligases</u> (EC.6) catalyze a reaction in which a C-C, C-S, C-O, or C-N bond is made or broken, such as (Isoleucine-tRNA ligase [EC 6.1.1.5]) need energy & or reactions This type anly require onersy for completing the reaction. DNA strand -3'-OH + O-P-O-5' DNA strand **DNA** ligase DNA strand -3'-O-P-O-5'- DNA strand

Active site

- Takes the form of a cleft or pocket Like : @ hikiden @ gulamic acid
- Takes up a relatively small part of the total volume of an enzyme

7 It has a Particular amino Acits

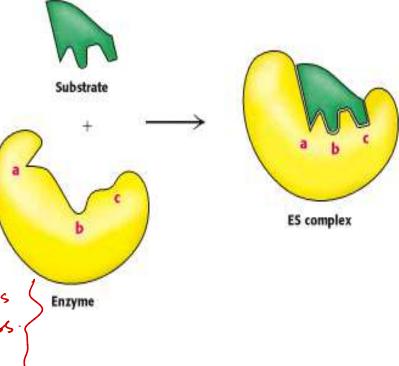
- Substrates are bound to enzymes by multiple weak attractions)
- -The specificity of binding depends on the precisely defined arrangement of atoms in an active site
- -The active sites of multimeric for the active sites of multimeric for the active sites of the active site o

X The enzyme should be 3D to be complementing to the shake of substrate.

Types of grands forming the active site is 1) Hyroxy - anino acid contaniv-g (2) Acidic Amino 5 (2) BULIC Amino 3 imidazale 2221 Form to complete it's function

Enzyme substrate binding

-Two models have been proposed to explain how an enzyme binds its substrate: the lock-and –key model) and the induced-* If the substrate is not sufer impossive in the active site there will be no reaction. fit model. - Lock-and-Key Model of Enzyme-Substrate Binding, in this model, the active site of the unbound enzyme is complementary in shape to the substrate. -"lock and key model"(accounted for the exquisite specificity of enzyme-substrate interactions? the implied rigidity of the enzyme's active site failed to account for the dynamic Active site changes that accompany ES complex yme substrate catalysis. Enzyme


Induced-Fit Model of Enzyme-Substrate Binding

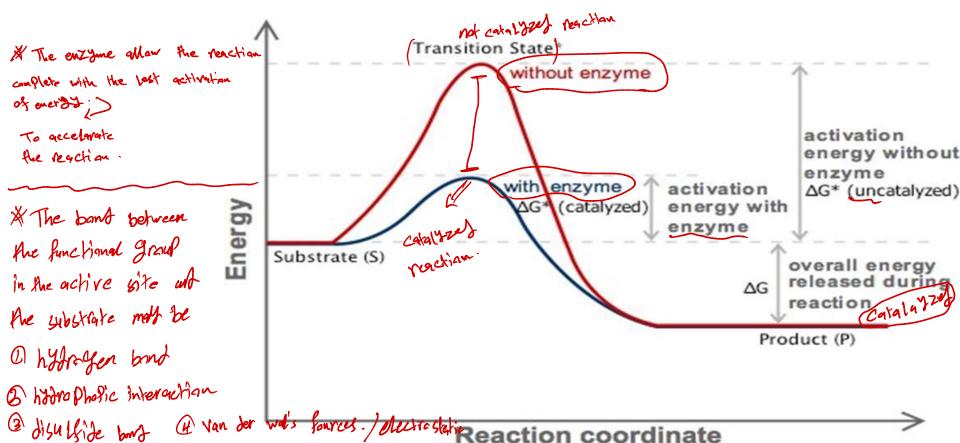
- In this model, the enzyme changes shape on substrate binding.

-The active site forms a shape complementary to the substrate only after the substrate has been bound.

- When a substrate approaches and binds to an enzyme they induce a conformational change, a change analogous to placing a hand (substrate) into a glove (enzyme).

At The changes will be after of this meconisme is the substrate binding to the enzyme. Complete with hormones

Mechanism of Action of Enzymes


- Enzymes are catalysts and increase the speed of a chemical reaction without themselves undergoing any permanent chemical change. They are neither used up in the reaction nor do they appear as reaction products.
- The basic enzymatic reaction can be represented as follows:

$$S + E \rightarrow P + E$$

- Where E represents the enzyme catalyzing the reaction, S the substrate, the substance being changed, and P the product of the reaction.
- -The mechanism of action of enzymes can be explained by two perspectives:
 - 1- Thermodynamic changes
 - 2 Processes at the active site

Thermodynamic changes ()

- All enzymes accelerate reaction rates by providing transition states with a lowered $\Delta G F$ for formation of the transition states.
- -The lower activation energy means that more molecules have the required energy to reach the transition state.

Processes at the active site (2) 1- Catalysis by proximity: for the molecules to react they must come within bond-forming distance of one another. , When an enzyme binds substrate molecules at its active site, it creates a region of high local substrate concentration. Anald be crowdness between the geblicities no leeveles. 3 Enzyme-substrate interactions orient reactive groups and bring them into proximity with one another. if is a log of the reactive groups in the reactive groups in the reactive site of in the bindity dire of the substrate. 2- Acid base catalysis: the ionizable functional groups of aminoacyl side chains of prosthetic groups contribute to catalysis by acting as acids or bases.) Acidic anino acid Like O gluramic acid / a Aspratic acid Joccure the 1(-ive) for Acidic { Basic anino acid Like O histiden @ Asn @ yln Joccure grands {(+ive) for Basic { for these grands {(+ive) for Basic { - General acid catalysis involves partial proton transfer from a **donor** to lower the free energy of the transition state. - General base catalysis involves **partial proton abstraction** from an acceptor to lower the free energy of the transition state. الدنوني سبعال الموكمة بيث الجزيري لنلل مسهل الحابل

Il General Acit carcholis !

Particle Proton transforme from a Jongo to Lower the activation energy. Donor the * To lower the activation energy should the invization will be occure. (HT)

52] General Basic catal His !> Is the same with the Acidic but involves Partial Proton abstraction from the acceptor (H^t) to arrive the transition the.

> Is also called lightic entenes also phety involves All digistic entrymes.

3- Catalysis by strain: enzymes that catalyze the lytic reactions involve breaking a covalent bond typically bind their substrates in a configuration slightly unfavorable for the bond that will undergo cleavage.

4- Covalent catalysis: accelerates reaction rates through transient formation of enzyme-substrate covalent bond. Three stages in covalent catalysis:

- 1- Nucleophilic reaction between enzyme and substrate
- 2- Electrophilic withdrawal of electrons from substrate
- 3- Elimination reaction (reverse of stage 1) -> regulation the imization.

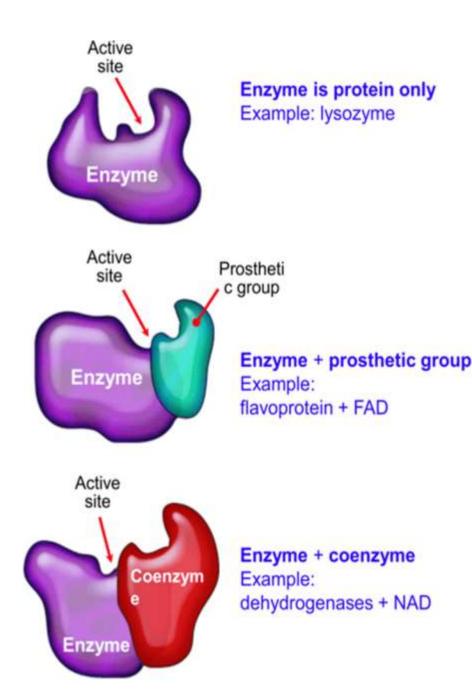
XII the ionization state is increase the bands between the molecules will be breatfind down.

If the inization in reactive groups should be under regulation.

- not for All enzymes 5- Metal Ion catalysis
- in chi hl nen (hi in) - Two classes of metal ion dependent enzymes:
- 1-Metalloenzymes contain tightly bound transition metal ions (Fe2+, Fe3+, Cu2+, Zn2+, Mn2+) كان بي مود بعامل (Fe2+, Fe3+, Cu2+, Zn2+, Mn2+) كان بي مود بعامل (Mn2+) 2- Metal-activated enzymes loosely bind metal ions (alkali or
- alkaline metal including Na+, K+, Mg2+ and Ca2+)
- Metal ions enhance catalysis in three major ways:
- 1-Binding to and orienting substrates for reaction as Mg2+ D in between them (or and sub) (2) fushed them (sub to enz)
- 2- Mediating redox reaction through changes in oxidation state such as reduction of O2 to H2O through electron transfer 3- Electrostatic stabilization or shielding of negative charges as anization limited Mg2+ binding to ATP Should Sannt

- 6- Electrostatic catalysis
- Enzymes seem to arrange active site charge distributions to stabilize the transition states of catalyzed reactions
- Substrate binding generally <u>excludes water from an enzyme</u> active site generating a low dielectric constant within the active site
- Electrostatic interactions are stronger
- pka's can vary by several pH units due to proximity of charged groups

- Alternative form of electrostatic catalysis: several enzymes as **superoxide dismutase** apparently **use charge distributions** to guide **polar substrates** to their active sites



Enzyme Specificity

- In general, there are four distinct types of specificity:
- 1- Absolute specificity: the enzyme will catalyze only one reaction.
- 2- Group specificity: the enzyme will act only on molecules that have specific functional groups, such as amino, phosphate and methyl groups
- 3- Linkage specificity: the enzyme will act on a particular type of chemical bond regardless of the rest of the molecular structure
- 4- Stereo chemical specificity: the enzyme will act on a particular steric or optical isomer.

not for All enzymes (require conchers).

- Some enzyme require cofactors to be active.
- Cofactors are a non-protein components of the enzyme.
- Organic Molecules (Coenzymes)
- Inorganic ions e.g., Ca2+ , Zn2+ (Prosthetic group)
- Cofactors may be:
- 1- The Permanently attached cofactors, are called Prosthetic group (such as a vitamin, sugar, or lipid or inorganic such as a metal ion)
- 2-Temporarily attached cofactors are called coenzyme, its detach after a reaction and may participate in the reaction with other enzyme.

Cofactors

- Cofactors can be subdivided into two groups: metals and small organic molecules

- Cofactors that are small organic molecules are called coenzymes.

- Most common cofactor are also metal ions.

- If tightly bound, the cofactors are called prosthetic groups.

- Loosely bound Cofactors serve functions similar to those of prosthetic groups but bind in a transient, dissociable manner either to the enzyme or to a substrate

work in more than one of enzymes.

NAO B3 Jay is a coenzyme

Prosthetic groups

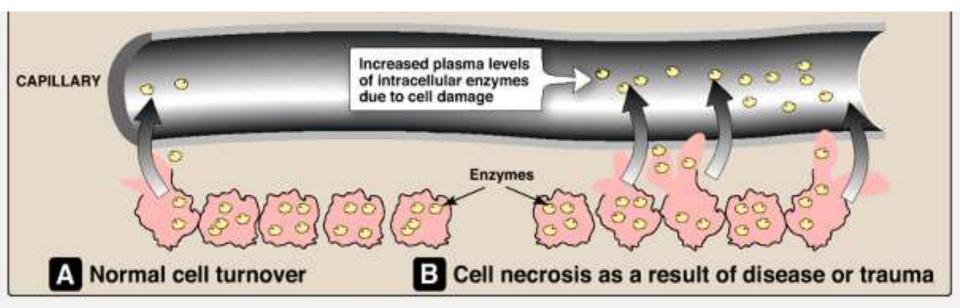
- Tightly integrated into the enzyme structure by covalent or non-covalent forces. e.g.; (A) Pyridoxal phosphate from vitamin (136) Flavin mononucleotide (FMN) from (B2) Flavin adenine dinucleotide (FAD) Thiamin pyrophosphate (TPP) from (B) Biotin >> B7 (its exiting as prosthetic group only), how as coenzyme) ØMetal ions – Co, Cu, Mg, Mn, Zn
- Metals are the most common prosthetic groups

Coenzymes

- Very often vitamins / (also have a mehl ims)
 They serve as recyclable shuttles—or group transfer agents—that transport many substrates from their point of generation to their point of utilization.
- The water-soluble B vitamins supply important components of numerous coenzymes.
- Chemical moieties transported by coenzymes include hydrogen atoms or hydride ions, methyl groups (folates), acyl groups (coenzyme A), and oligosaccharides (dolichol).

Important Prosthetic Groups and Coenzymes

Prosthetic Group	Enzymes/ Proteins	
Zn ⁺⁺	Carbonic anhydrase, Alcohol	
	dehydrogenase	
Fe ⁺⁺⁺ or Fe ⁺⁺	Hemoglobin, Cytochromes, ferrodoxin	
Cu ⁺⁺ or Cu ⁺⁺⁺	Cytochrome oxidase	
K ⁺ and Mg ⁺⁺	Pyruvate Phosphokinase	


Coenzymes	Vitamins
Nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+)	vitamin B ₃ (niacin)
Flavin mononucleotide (FMN+) or flavin adenine dinucleotide(FAD+)	vitamin B ₂ (riboflavin)
Pyridoxal phosphate	vitamin B ₆ (pyridoxine)
Coenzyme A 💥	Pantothenic Acid

Diagnostic significance of enzymes

- 1- Enzymes can act as diagnostic markers of underlying diseases.
- 2- Enzymes can also act as reagents for various biochemical estimations and detections of glacase axidase reaction of the normal surger estimation the consentration in the body. The body is 80-loc

- Enzymes as diagnostic markers 1- <u>Functional plasma enzymes</u> (Plasma derived enzymes):
- Certain enzymes, proenzymes, and their substrates are present at all times in the circulation of normal individuals and perform a physiologic function in the blood,
- **Examples** of these functional plasma enzymes include lipoprotein lipase, pseudo cholinesterase, and the proenzymes of blood coagulation and blood clot dissolution. The majority of them are synthesized in and secreted by liver.

- 2- Nonfunctional plasma enzymes (Cell derived enzymes):
- Plasma also contains numerous other enzymes that perform no known physiologic function in blood.
- -These apparently nonfunctional plasma enzymes arise from the routine normal destruction of erythrocytes, leukocytes, and other cells. The profer that is the plasme.
- -Tissue damage or necrosis resulting from injury or disease is generally accompanied by increases in the levels of several nonfunctional plasma enzymes.

Isoenzymes (Isoenzymes)

- Are homologous enzymes that catalyze the same reaction but have differences in enzymatic properties.
- Often different isoenzymes are found in different locations in a cell or in different organs/tissues of an organism.
- -They are from different polypeptide chains that coded by different genes and so, they are affected by different activators and different inhibitors in different tissues.

e.g.:

Lactate dehydrogenase isoenzymes, 4 Rolle Pellis chains .

- The enzyme interconverts lactate and pyruvate (LDH)
- Humans have two isoenzymic chains for lactate dehydrogenase: LDH (M) found in muscle and LDH (H) found in heart.
- M is optimized to work under anaerobic conditions and H optimized to work under aerobic conditions.

- axidation reaction -

-There are 5 different isoenzymes.

-The relative ratio of the isoenzymes depends on the location in the organism as well as the developmental stage.

Isoenzyme	Tissue origin
LDH1 (H4) the sylocardiac intraction. 130 HDalton	Cardiac and kidney
LDH2 (H3M)	Cardiac, kidney, brain and RBCs
LDH3 (H2M2)	Brain, lung and WBCs
LDH4 (HM3)	Lung, skeletal muscle
LDH5 (M4) the have yest one	Skeletal muscle and liver
CK/CPK Isoenzymes	(inter) Binmarther

CK/CPK Isoenzymes

- There are three Isoenzymes.
- Measuring them is of value in the presence of elevated levels of CK or CPK to determine the source of the elevation.
- Each isoenzyme is a dimer composed of two protomers 'M' (for muscles) and 'B'(for Brain).
- -These isoenzymes can be separated by, electrophoresis or by ion exchange chromatography.

Isoenzyme	Electrophoretic mobility	Tissue of origin	Mean % in blood
<u>MM</u> (CK3)	Least	Skeletal muscle Heart muscle	97-100%
MB(CK2)	Intermediate most one to dignosic the mochardial intraction	Heart muscle	0-3%
$\underline{BB}(CK1)$	Maximum	Brain	0%

Enzyme Kinetics

- It is the field of biochemistry concerned with the quantitative measurement of the rates of enzyme-catalyzed reactions and the study of the factors affecting these rates.
- -The rate of a chemical reaction is described by the number of molecules of reactant(s) to be converted into product(s) in a specified time period which is dependent on the concentration of the chemicals involved in the process and on rate constants that are characteristic of the reaction.